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Abstract

Shape Matching and Object Recognition

by

Alexander Christiansen Berg

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Jitendra Malik, Chair

We address comparing related, but not identical shapes in images following a

deformable template strategy. At the heart of this is the notion of an alignment

between the shapes to be matched. The transformation necessary for alignment and

the remaining differences after alignment are then used to make a comparison.

A model determines what kind of deformations or alignments are acceptable, and

what variation in appearance should remain after alignment. This ties strongly with

the idea that the difference in shape is the residual difference, after some family of

transformations has been applied for alignment.

Finding an alignment of a model to a novel object involves search through the

space of possible alignments. In many settings this search is quite difficult. This work

shows that the search can be approximated by an easier discrete matching problem

between key points on a model and a novel object. This is a departure from tra-

ditional approaches to deformable template matching that concentrate on analyzing

differential models. This thesis presents theories and experiments on searching for,

identifying, and using alignments found via discrete matchings.

In particular we present a mathematical and ecological motivation for a medium

scale descriptor of shape, geometric blur. Geometric blur is an average over transfor-
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mations of a sparse signal or feature channel, and can be computed using a spatially

varying convolution. The resulting shape descriptors are useful for evaluating local

shape similarity. Experiments demonstrate their efficacy for image classification and

shape correspondence.

Finding alignments between shapes is formulated as an optimization problem over

discrete matchings between feature points in images. Similarity between putative cor-

respondences is measured using geometric blur, and the deformation in the configu-

ration of points is measured by summing over deformations in pairwise relationships.

The matching problem is formulated as an integer quadratic programming problem

and approximated with a simple technique. Experimental results indicate that this

generic model of local shape and deformation is applicable across a wide variety of

object categories, providing good (currently the best known) performance for object

recognition and localization on a difficult object recognition benchmark.

Furthermore this generic object alignment strategy can be used to model varia-

tion in images of an object category, identifying the repeated object structures and

providing automatic localization of the objects.

Professor Jitendra Malik, Chair Date
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Chapter 1

Introduction

1.1 Motivation

We address comparing related, but not identical shapes in images. As concrete

examples, consider the images above. How similar are the two skulls? Are the two

elephants shown from the same species? How similar are the helicopters in the two

scenes? At the heart of all these questions is the notion of an alignment between the

shapes to be matched. The transformation necessary for alignment and the remaining

differences after alignment are then used to make a comparison.
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Chapter 1. Introduction

The question, “Are these similar?” has occupied philosophers for millennia. This

thesis focuses on measuring the similarity of objects in images. Human perception of

similarity has been studied by psychologists since the beginning of modern psychology

around the 1870s. Particularly relevant from that era is the slogan of the Gestalt

movement started by Max Wertheimer, “The whole is different than the sum of the

parts.” The parallel here is the goal of finding an alignment between objects in order

to compare them. The alignment itself is found by considering the aspects of the

whole object together.

Philosophers, psychologists, and naturalists1 have all considered the problem of

comparing shapes in images, but it was not until the advent of practical comput-

ers around the late 1960s and early 1970s that these theories could begin to be

effectively tested on real images. At least three different groups working in differ-

ent communities initiated related approaches to the problem: in computer vision,

Fischler and Elschlager [Fischler and Elschlager, 1973], in statistical image analy-

sis, Grenander [Grenander et al., 1991] (and earlier), and in neural networks, von

der Malsburg [Lades et al., 1993] (and earlier). We will use a deformable template

framework similar to that from statistical pattern theory.

Our goal is to localize and categorize objects in images. This is accomplished

by building models for object appearance and evaluating how well these models fit

parts of images. In particular the models we construct will be deformable templates.

Deformable templates are models parameterized by a deformation, referred to earlier

as an alignment. The model determines what kind of deformations or alignments are

acceptable, and what variation in appearance should remain after alignment. This

ties strongly with the idea that shape is the residual difference, after some family of

transformations is applied for alignment.

1D’Arcy Thompson (1860-1948), a naturalist, analyzed variation in biological forms before the
formal development of mathematics in this area. Two of his drawings form the left column of the
first figure.
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Chapter 1. Introduction

Aligning a model to a novel object involves search through the space of possible

alignments. In many settings this search is quite difficult. This work shows that

the search can be approximated by an easier discrete matching problem between key

points on a model and a novel object. This is a departure from traditional approaches

to deformable template matching that concentrate on analyzing differential models.

This thesis presents theories and experiments on searching for, identifying, and using

alignments found via discrete matchings.

We break the problem of matching shapes into computing measures of local shape

similarity and finding a low distortion correspondence between keypoints that have

similar local shapes.

In particular we present a mathematical and ecological motivation for a medium

scale descriptor of shape, geometric blur. Geometric blur is an average over transfor-

mations of a sparse signal or feature channel, and can be computed using a spatially

varying convolution. The resulting shape descriptors are useful for evaluating local

shape similarity. Experiments demonstrate their efficacy for image classification and

shape correspondence.

Finding alignments between shapes is formulated as an optimization problem over

discrete matchings between feature points in images. Similarity between putative cor-

respondences is measured using geometric blur, and the deformation in the configu-

ration of points is measured by summing over deformations in pairwise relationships.

The matching problem is formulated as an integer quadratic programming problem

and approximated with a simple technique. Experimental results indicate that this

generic model of local shape and deformation is applicable across a wide variety of

object categories, providing good (currently the best known) performance for object

recognition and localization on a difficult object recognition benchmark.

Furthermore this generic object alignment strategy can be used to model varia-

tion in images of an object category, identifying the repeated object structures and
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Chapter 1. Introduction

providing automatic localization of the objects.

1.2 Outline

Chapter 2 develops a simple method for comparing signals taking into account an

idea of what geometric distortions are expected. The result is a soft similarity mea-

sure between patches called geometric blur. The motivation is to make an estimate

of whether an alignment of objects that brings together two patches has a chance of

being a good overall alignment by computing some measure of similarity between the

patches. The approach presented attacks the problem in two ways. First by looking

at paches that are small with respect to the aligning transform a local approxima-

tion of the aligning transform as affine is appropriate. Second instead of considering

all possible affine transformations explicitly, geometric blur is developed as a way to

estimate the average quality of matches over a range of transformations. The math-

ematical development allows a great deal of generality – later geometric blur is used

in settings other than simply finding alignments between objects. Experiments on

synthetic data are presented to highlight the features of geometric blur as a similarity

measure.

Next in Chapter 3 we begin the empirical study of correspondences in real images.

Given a known correspondence between images of the same object, we study the

covariance of corresponding patches. In some settings this covariance is well modeled

by a simple geometric blur. This result motivates geometric blur as a basis on which

to build descriptors for wide-baseline stereo matching of images of the same object.

Chapter 4 extends the experimental motivation for geometric blur to the problem

of identifying similar bits of shape in images of objects from a variety of categories.

Here the goal is not simply recognizing different views of the same object but recog-

nizing different instances of a category of object. We begin to address the question
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Chapter 1. Introduction

of how to discretize an alignment problem. A simple descriptor of local shape is

developed by sub-sampling geometric blur computed from oriented edge channels.

Chapter 4 also introduces the dataset used for multiple experiments in the remainder

of the thesis.

Using geometric blur to estimate the quality of a matching locally, Chapter 5

presents a framework for evaluating and finding matchings based on pairwise rela-

tionships between the individual keypoint matches. Modeling pairwise interactions

results in an integer quadratic programming problem that is potentially quite diffi-

cult. It turns out that the instances observed in practice are relatively simple. This

chapter presents matching results between objects in different images. In addition ex-

periments show that the quality of these matchings can be used as a similarity metric

resulting in good performance for nearest neighbor recognition of object categories.

The key result is that the general shape of objects is matched in real images of many

categories of object at a level of fidelity that is useful for recognition.

The recognition experiments in Chapter 5 use a generic model for the variation

of exemplars from many different categories of object. This same generic alignment

model can be used to bootstrap learning category specific models for variation and

alignment. Chapter 6 presents results on building models for variation of object

categories, and automatically segmenting objects from their background using this

approach.

Before beginning the technical discussion we go through some recent history of

the study of visual recognition.

1.3 Some Connections to Psychology

“Esse est percipi”

–George Berkeley
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Chapter 1. Introduction

George Berkeley’s quote translates as, “to be is to be perceived” and is but one of

the manifold theories from Philosophy and Psychology concerning visual perception

from function to physical instantiation. Most relevant to this work are results on

perception of shape, and the recognition of objects — many of which have influenced

the approach taken here.

Computer vision has dual goals: using visual data to construct accurate models

of the world, and understanding/mimicking human abilities to do so. In fact psy-

chologists2 have sometimes confused these goals as being the same. More recent work

has demonstrated that context and prior experience have a great influence on how

humans perceive visual stimuli. This thesis reflects the dual nature of computer vi-

sion. The mathematical development of geometric blur is motivated by an explicit

model for the variation in signals due to geometric distortion, and attempts to mea-

sure this variation. However, when applying the matching framework developed in

this work to object categorization, success is measured by the ability to agree with

human categorizations for objects, and many design choices are made with an eye

toward accomplishing this goal.

Using the location and orientation of edge-like structures in images is consistent

with studies showing that the location of an edge, or phase, contains a great deal of

the information in an image, at least as far as humans are concerned [Piotrowski and

Campbell, 1982]. In fact using edge-like features and the spatially varying geometric

blur fits well with what is known about the log polar structure of retinotopic maps

in the first part of the visual cortex (V1) [Tootell et al., 1982]. The fact that deriving

geometric blur with the objective of making signal comparison robust to small geo-

metric distortion results in a structure very similar to the log polar retinotopic map

2James J Gibson (1904-1979), a psychologist, proposed that perception was “invariant” depen-
dent only on external physical stimuli. Despite ignoring what was later understood to be the strong
influence of context on perception, he introduced ideas of ecological optics, the statistics and prop-
erties of the physical world that humans can observe, that are still relevant and studied today.
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Chapter 1. Introduction

points in a direction for further study.

Studies of “shape constancy” indicate that small variations in viewing angle are

usually discounted by human observers [Thouless, 1931] [Slater and Morison, 1985].

This relates to the objective for geometric blur presented in Chapter 2, robustness to

small affine transformations.

At the level of object recognition, the ideas of recognition by prototypes [Rosch,

1973] (and later) and of prototypical views [Palmer et al., 1981] are consistent with

some of the simple recognition strategies presented in this work based on exemplar

images. A novel image is classified by using a similarity measure to compare it to

previously observed images of objects, combining the idea of recognition by prototyp-

ical exemplars and the idea of canonical two dimensional projections of objects. Also

studies of the ambiguity of parts without context support an approach where multiple

parts are combined in recognition [Palmer, 1975]. These all tie into the Gestalt notion

that recognition depends jointly on the parts together. In computer science terms,

this implies that the discrete optimization we will encounter might be difficult.

Despite the many connections between work in psychology and the algorithms

presented here, there is an enormous amount of theory and speculation about human

perception yet untapped by computer vision researchers. Even accepting that only

some small percentage of that work is important and relevant for constructing machine

vision systems, a great deal remains unexplored.

As a counter point: despite the fact that humans have worked to understand

vision for as long as philosophy has been around, it was the advent of computers in

the mid 1900s that allowed computational models for vision to be tested, and resulted

in the conclusion by psychologists that,

“... vision is extremely difficult.”

–Stephen E. Palmer
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Chapter 2

Geometric Blur

2.1 Introduction

The introduction motivates geometric blur with the goal of estimating the quality of

an alignment that brings one key point of a model together with one key point of

a novel instance. This chapter expands that motivation, describes a mathematical

theory for geometric blur, and presents results on simple synthetic patterns to illus-

trate its properties. Chapter 3 presents results on learning optimal transformations

for matching images of objects, viewed from different camera angles, that shows sim-

ilar structure to the developments in this chapter. Chapter 4 develops a descriptor

based on geometric blur and presents experiments on classifying images containing

instances of object categories.

The two helicopters shown in Figure 2.1 are easily recognizable as helicopters and

a young child could indicate positions for the nose and tail for each. The crops below

indicate the difficulty faced by a computer. Analogous structures in the images are

only very roughly similar. In order to find a correspondence and then an alignment

between the two objects it is necessary to find some way to get at this rough similarity.
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Chapter 2. Geometric Blur

Figure 2.1: In the top row are two images showing similar objects, helicopters. The
bottom row shows that the local structure of the objects is only very roughly similar.
Geometric blur is motivated by the goal of identifying rough similarity between bits of
shapes.

One similarity between the two cropped parts of the helicopter is the smooth

protruding shape. Although not close to being the “same” shape they are nevertheless

similar. This is not a coincidence as helicopters fly through the air, often frontwards,

and must be somewhat aerodynamic. Another similarity is the specularity on the

top portion of the object. In both cases this seems to result from the sun reflecting

off of the windows. Again this is not a coincidence, helicopters are aerodynamic,

smooth, often shiny, often outside, often right side up, and it is often sunny outside.

Making either the notion of smooth protruding shape or specular reflection resulting

from the sun on the windshield precise is difficult, and perhaps impossible without

a great deal more high level knowledge than is currently available to machine vision

systems. Instead we note that these similarities in shape, lighting, and reflectance

result in somewhat repeatable edge-like features in the image. There is a roughly

vertical bit of edge near the tip of the nose and slanting up and to the right above

9



Chapter 2. Geometric Blur

it. In fact the design of cockpit windows and the resulting specularities, give rise to

a number of edges sweeping up and to the right from the nose. There are also more

level edges sweeping slightly down and to the right from the nose. It is this rough

sketch of edges that we will exploit. Although the edges are artifacts produced by

a complex combination of geometry, pose, lighting, and surface reflectance, none of

which are actually the same for the two examples shown, they nevertheless show a

rough consistency.

We will develop a mathematical framework for finding similar locations on ob-

jects by looking for similar configurations of discrete features nearby. These discrete

features should result from repeatable phenomena, and could be based on color, tex-

ture, or a number of other cues. Later, in Chapter 5 these local similarities will be

combined to find an alignment between shapes.

Section 2.2 gives a mathematical motivation and derivation for geometric blur.

This is followed by Section 2.3 showing results of experiments on synthetic data.

Chapter 3 presents empirical results on real images indicating that for images of

the same object the geometric blur model may be appropriate. Chapter 4 presents

a feature descriptor based on geometric blur and describes experiments using geo-

metric blur for localizing parts of objects in images and a bag of features model for

recognizing images of object categories. This is extended to alignment in Chapter 5

2.2 Derivation of Geometric Blur

We motivate geometric blur as an estimate for a robust similarity measure which

requires computing an average over distorted versions of a signal. This average can

be computed by convolving the signal with a spatially varying kernel. Furthermore

we show that in a reasonable setting this can be done very efficiently. This chapter

concludes with test results using geometric blur in a recognition task on synthetic

10



Chapter 2. Geometric Blur

signals.

2.2.1 An Example as a Way Point

Before beginning this development a simple example of comparing distorted signals

is presented to make concrete some of the mathematics to follow.

A B C

Figure 2.2: Three similar signals composed of impulses. The goal is to recognize that a
small transformation brings A and B into alignment, but not so for B and C.

In Figure 2.2, which signal, A or C, is most similar to the signal B? The ques-

tion is ambiguous, and we need to take into consideration some type of accepted

variation, say small affine transformations. Note that here we mean spatial affine

transformations, not transforms in intensity. Making robust comparison of signals

with variation in intensity is rather better studied than the variation in signals due to

distortions in geometry. Even with this added information, the correlation between

either the left (A & B) or right (B & C) pair of signals is low and quite similar,

providing no information about which are more similar. This can be seen in the

first row of Figure 2.3 where the insets show the point-wise products of the signals

on either side. Note that smoothing the signals with a uniform Gaussian does not

quite solve the problem, as can be seen in the second row of the Figure 2.3. After

blurring the signals with a uniform Gaussian the correlation between either pair of

signals is similar, missing the clear differences. The basic idea of geometric blur is to
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Chapter 2. Geometric Blur

blur or average the signals over the range of acceptable transformations (small affine

transformations in this case), as shown in the third row of Figure 2.3. This will turn

out to be mathematically equivalent to convolving the signal with a spatially varying

kernel. Roughly speaking, parts of the signal farther from the center are blurred more

because they have the opportunity to move more. After this type of blur, correlation

can correctly identify the more similar pair.

A B C

Figure 2.3: The top row shows three signals, A, B, and C. The top row insets show
the point-wise product of the signals on either side, each results in correlation 0.2. the
second row shows the result of applying a Gaussian blur to the signals. Note that more
context is not included, but the correlations are still equal (0.22). The third row shows
the result of applying geometric blur, a spatially varying blur replicating the effect of
averaging over small affine transforms of the signal. Now the insets indicate a difference
between the correlations: 0.63 for the correct match versus 0.4 for the incorrect match.
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Chapter 2. Geometric Blur

2.2.2 Mathematical Motivation

There are two basic approaches for making robust or invariant comparisons between

images of objects: finding transformational alignments or computing invariant fea-

tures. In order to make these concrete, consider two signals, A and B in the space of

all signals I and let T be a transform on signals in the space of transforms T . Suppose

S(A, B) is a similarity function on signals then an invariant or robust comparison can

be constructed in one of two ways:

1. For a transformation T , let ST (A, B) = S(A ◦ T, B). Then the average or

maximum of ST over transforms is a robust or invariant similarity between A

and B. A prior on T can be introduced and used to form a weighted average

of the ST .

2. Define features f : I → O, that are invariant to transformations, so f(A) =

f(A◦T ) for any T ∈ T . Then Ŝ(A, B) = s(f(A), f(B)) is an invariant similarity,

where s is a similarity on the output of the invariant features.

The drawback with the first approach is usually the computation time to find

the best transformation T , or to integrate over a range of transformations. The

drawback of the second is usually a loss of discriminative power. It is difficult to

construct invariant functions that maintain relevant information about the signal.

Our approach is motivated by approximating the first approach. Instead of finding

transforms that align two signals maximally, we look at how well the signals are

aligned on average by a range of transforms. This average is weighted more heavily

toward transforms that are considered more likely; for instance the identity.

13



Chapter 2. Geometric Blur

In order to compute the average similarity over a range of transformations we

need to compute the following integral:

∫
T

S(A ◦ T, B)dµ (2.1)

where µ is a measure over the space of transformations. The goal now is to

approximate this calculation. One realization1 using normalized correlation as the

similarity function looks like:

∫
T

1

|A||B|

∫
x

(A ◦ T )(x)B(x)dxdµ (2.2)

The first approximation is to drop the normalization factors |A| and |B| for now,

they will return in a slightly different form in Section 2.2.4. Then reverse the order

of integration to obtain:

∫
x

∫
T

(A ◦ T )(x)B(x)dµdx =

∫
x

B(x)

(∫
T

(A ◦ T )(x)dµ

)
dx (2.3)

The expression in parenthesis on the right hand side of Equation 2.3 is an average

over transformed versions of the signal A. Geometric blur refers to computing this

average of geometric transformations of a signal.

2.2.3 Geometric Blur Definition

The geometric blur GBI(x) of a signal I(x) over coordinate x is defined to be the

integral over a range of distorted versions of the signal:

GBI(x) =

∫
T

I(T (x))dµ (2.4)

Where T are spatial transforms and µ is a measure on the space of transforms. If

1Appendix 2.A shows that other choices for similarity end up requiring similar calculations.
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the transforms are parameterized by Rk, and µ is absolutely continuous with respect

to the Lebesgue measure on Rk, then by the Radon-Nikodym theorem there is a

density ρ such that:

GBI(x) =

∫
p

I(Tp(x))ρ (Tp) dp (2.5)

Where Tp is a transform specified by parameters p in Rk and the integral is

computed with respect to the Lebesgue measure on Rk. The density ρ determines

the measure on transforms. In order to reduce notational clutter we will usually drop

the subscript p and assume that the transform T is parameterized by p.

Equation 2.4 is an integration over warped versions of the signal. Rewriting this

to integrate over the range (spatial coordinates of I) of the transforms, using multiple

iterations of the Fubini-Tonelli theorem gives:

GBI(x) =

∫
p

I(T (x))ρ (T ) dp (2.6)

=

∫
p,z

I(T (x))ρ (T ) χ(T (x) == z) (dp× dz) (2.7)

=

∫
z

∫
T

I(T (x))ρ (T ) χ(T (x) == z)dpdz (2.8)

=

∫
z

I(z)

∫
T :T (x)==z

ρ (T )dp̃dz (2.9)

Where p ∈ Rk parameterizes the transforms T with the the Lebesgue measure on

Rk and z ∈ Rl parameterizes the (bounded) range of the transforms with the Lebesgue

measure on Rl divided by the area of the range of the transforms (in order to ensure

that the transition from Equation 2.6 to 2.7 holds). Here dp̃ indicates integration

with respect to the measure on the “slice”, in this case, {T : T (x) == z}.

A change of variables puts this in the form of a convolution with a spatially varying
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kernel Kx(y) =
∫

T :(x−T (x))==y
ρ (T )dp̃, where the slice is now, {T : (x− T (x)) == y},

GBI(x) =

∫
z

I(z)

∫
T :T (x)==z

ρ (T ) dp̃dz (2.10)

=

∫
y

I(x− y)

∫
T :(x−T (x))==y

ρ (T ) dp̃dy (2.11)

=

∫
y

I(x− y)Kx(y)dy (2.12)

2.2.4 Comparing Signals Using Geometric Blur

In practice the motivating Equation 2.1, repeated here,

∫
T

S(A ◦ T, B)dµ (2.13)

is not quite appropriate for comparing signals. We often encounter two observations

of a shape and would like to evaluate their similarity or likelihood of being the same.

This is better expressed by the following:

∫
Ta

∫
Tb

S(A ◦ Ta, B ◦ Tb)dµdµ (2.14)

Using normalized correlation and applying the results of the previous section we

obtain

∫
Ta

∫
Tb

S(A ◦ Ta, B ◦ Tb)dµdµ =

∫
x

∫
Ta

A ◦ Ta

∫
y

B(x− y)Kx(y)dydµdx (2.15)
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here we make a broad approximation2 and separate the integrals:

∫
x

(∫
Ta

A ◦ Tadµ

) (∫
y

B(x− y)Kx(y)dy

)
dx (2.16)

Apply the result of the previous section again to obtain:

∫
x

(∫
y

A(x− y)Kx(y)dy

) (∫
y

B(x− y)Kx(y)dy

)
dx (2.17)

which is simply the correlation between the geometric blur of each signal. Here

we note that the geometric blur signals are normalized for the correlation.

The key point is that geometric blur is computed for each signal, and then com-

pared afterward using a simple normalized correlation.

2.2.5 Fast Computation

If the spatially varying kernel Kx(y) is simple enough the computation in Equa-

tion 2.12 becomes quite easy. The two conditions required are that Kx(y) is depends

only on |x| and |y|. Our most often used kernel is in fact a shaped like a Gaussian

with varying standard deviation, Kx(y) = f(α|x|+ β)Gα|x|+β(y), where f is a scaling

factor. It is clear that this kernel satisfies both conditions. Given these conditions we

can rewrite Equation 2.12 as follows:

GBI(x) =

∫
y

I(x− y)Kx(y)dy (2.18)

=

∫
y

I(x− y)K|x|(y)dy (2.19)

2The geometric blur computation itself is exact, however the motivation presented here for geo-
metric blur is an approximation. The two approximations made when motivating geometric blur by
correlation are the one mentioned above and the rearrangement of the normalization.
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Here K|x|(y) is simply Kx0(y) for any x0 with |x0| = |x|. Picking a discrete set of

values r1 . . . rk ∈ R we can approximate 2.18 as:

GBI(x) ≈
∑

i∈{1...k}

ind(x, i)

∫
y

I(x− y)Kri
(y)dy (2.20)

where

ind(x, a) =

 1 if a = argmini∈{1...k} ||x| − ri| and;

0 otherwise.

is simply an indicator function that “chooses” the correct blur level. These turn out to

be concentric annular regions. The computational cost of computing geometric blur is

then just the cost of computing k convolutions and using the indicator function to trim

out the appropriate sections. Chapter 4 shows how a descriptor is created in practice.

Furthermore if the Kx(y) are separable, as they are in most of the examples, then the

convolutions themselves can be computed in one dimension and are very efficient.

2.3 Behavior on Synthetic Signals

We present some simple examples to illustrate the properties of geometric blur, then

consider a recognition experiment on synthetic data.

2.3.0.1 Example 1

Returning to the example signals in Figures 2.2 and 2.3. We now consider comparing

signal B to rotations of itself, and rotations of its vertical mirror image. The green

dashed lines in Figure 2.4 show the correlation between B and rotated versions of

itself, and the red dashed line shows correlations between B and rotated versions

of its vertical mirror image. As a reference, the signals shown in Figure 2.2 would
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correspond to the signals used for a rotation of 0.35 radians as shown on the far right

of Figure 2.4.

In this and all other examples in this section the kernel function is Kx(y) =

f(α|x| + β)Gα|x|+β(y), where G is a Gaussian with the specified standard deviation,

and f is a normalization factor so that the Kx is L2 normalized.

Figure 2.4: The far right end of the graph, rotation by 0.34 radians corresponds to the
signals shown in Figure 2.3.
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Figure 2.5: Each plot on the left shows the correlation of the signal, to its right, with
a rotated version of itself as the amount of rotation changes. Without any blur the
correlation drops of rapidly. This is mitigated by a Gaussian blur, but the effect depend
on the scale of the signal. Geometric blur increases farther from the origin and results in
correlation close to independent of the signal, when the signal is sparse.
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2.3.0.2 Example 2

One of the key features of geometric blur is that for sufficiently sparse signals the

correlation between a signal and a transformed version of itself depends only on the

transformation, not on the signal. This is illustrated with three different signals

composed of two spikes as shown in the top row of Figure 2.5. In each case there is

one spike at the center and a second spike at various distances away from the center.

Comparing the signals to rotated versions of themselves results in the correlation

plots shown below in Figure 2.5. These plots show the correlation using no blur, a

uniform Gaussian blur, and a geometric blur. Note that for a particular choice of

variance for the Gaussian points close to the center are blurred too much and point

farther away blurred not enough. Geometric blur results in a fall-off in correlation

that is close to independent of the actual position of the spikes. As noted earlier this

property only holds for sufficiently sparse signals.

2.3.0.3 Example 3

In order to see that geometric blur helps for discrimination in the presence of distortion

we performed a discrimination task using 200 test patterns. Rotated versions of the

test patterns were compared to the original test patterns. Both the original test

patterns and the rotated versions were blurred by either geometric blur or a uniform

Gaussian blur. For geometric blur, a spatially varying kernel Kx(y) = Gα|x|(y), where

Gσ(y) is a Gaussian with standard deviation σ, was applied. For uniform Gaussian

blur the kernel Gσ(y) was applied. Then each blurred rotated pattern was compared

to all the blurred original patterns using normalized correlation and matched to the

closest one. The test patterns used in this example were random with each pixel

in a disc of radius 25 pixels independently being turned on with probability 5%.

Figures 2.6 shows the the misclassification rate as the amount of blur, α or σ is
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varied. Geometric blur has much better discriminative power, and manages to be

general enough to handle large rotation somewhat more effectively than uniform blur.
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Figure 2.6: Identifying 200 random test images after rotation, using various amounts (α)
of geometric blur on the top plot, and varying amounts of a uniform Gaussian blur on
the bottom plot.
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2.4 Conclusion

This chapter introduced geometric blur, rewriting the average over distorted versions

of a signal as a convolution with a spatially varying kernel:

∫
T

I(T (x))dµ =

∫
y

I(x− y)Kx(y)dy

This is motivated by approximating robust similarity measures for geometrically

distorted signals. We originally introduced geometric blur in [Berg and Malik, 2001],

and these ideas have been applied in [Efros et al., 2003] (in a temporal instead of

spatial domain) and [Berg et al., 2005] and others ([Ren et al., 2005]). In addition

the mathematical development showing that geometric blur is a method to obtain

robustness to small affine transforms has been applied to understanding of a shape

contexts, and has inspired some of the generalization of shape contexts [Mori et al.,

2005].

Appendix 2.A Alternate Motivations

As an alternative to motivating geometric blur by approximating Equation 2.2 con-

sider a generative model:

J = I ◦ T + η

for observations, J , of a base signal, I. There is some probability p(T ) for each

transform, and a noise model p(η). The probability of observing J is then

∫
T

p(η == I ◦ T − J)p(T )dT

If we assume a simple Gaussian noise model then this becomes:
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∫
T

e−
1
a

R
x

1
b
(I◦T (x)−J(x))

2
dxp(T )dT

writing out the series for e yields:

∫
T

∑
n=0...∞

1

n!

(
−1

a

∫
x

1

b
(I ◦ T (x)− J(x))

2

dx

)n

p(T )dT

after swapping the sum and the integral,

∑
n=0...∞

∫
T

1

n!

(
−1

a

∫
x

1

b
(I ◦ T (x)− J(x))

2

dx

)n

p(T )dT

The first term (n = 0) is constant. We will will write the second (n = 1) term:

−1

a

∫
x

∫
T

1

b
(I ◦ T (x)− J(x))

2

p(T )dTdx

that expands to

−1

a

∫
x

(∫
T

1

b
I2(T (x))p(T )dT − 2J(x)

∫
T

1

b
I(T (x))p(T )dT + J2(x)

)
dx

The two integrals over T are then the geometric blur of I2 and I.
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Chapter 3

Ecologcal Study of Blur

3.1 Introduction

This chapter presents empirical results showing that the covariance of regions around

corresponding points in images is well fit by a simple geometric blur. Given a “correct”

correspondence between points on images, the covariance of corresponding image

regions can be studied. We consider correspondences between images varying with

respect to factors such as: viewing direction, viewing orientation, focus, etc. Each

set of images considered in this chapter is of the same object while Chapter 4 shows

results on images of many different objects from a number of object categories.

In order to discuss corresponding points in images, it is first necessary to identify

points in images. Generally a region of interest operator will be applied to images

and produce feature centers and support regions, sometimes in addition to a direc-

tion associated with the region. In a sense this is the second approach discussed in

Section 2.2.2, finding features that are invariant to transforms; the idea is that the

region of interest operator commutes with transformations of the image. It is difficult

to do this well, and in practice this invariant feature approach is combined with a
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robust comparison of the residual difference. It is a subtle point, but worth keeping

in mind that this is a combination of the two techniques discussed in Section 2.2.2.

Consider the two views of a tree shown in Figure 3.1. Given a correspondence

between the images we can consider the similarity between corresponding regions. In

the rest of this chapter we use known transformations between the images together

with various region of interest operators to find corresponding pairs of image regions.

The covariance of these regions is then studied, as well as the covariance of edge-like

features associated with the regions.

Figure 3.1: A pair of images of a tree showing change in viewpoint and viewing direction.

3.2 Images and Correspondences

The images used in this chapter come from work by K. Mikolajczyk and C. Schmid [Miko-

lajczyk and Schmid., 2003] on region of interest operators and descriptors for wide-

baseline matching. There are 6 sets of images of an object or scene. Each set exhibits

different types of variation. We break these 6 sets of images into two groups as ex-

emplified in Figure 3.2. One group showing variation in viewing direction, and the

other not showing variation in viewing direction, but exhibiting variation in other

parameters such as focus and illumination.
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Figure 3.2: Top: Two images from a set exhibiting significant change in viewpoint, Bottom:
Two images from a set showing change in focus, with little to no change in viewpoint.

3.2.1 Region of Interest Operator

The two region of interest operators considered are the best performing operators

from [Mikolajczyk and Schmid., 2003]. The region of interest operators are described

in more detail below:

1. Harris Affine: Regions of interest are found at local maximum of an operator

on scale and transform space. This operator responds to corners and edges. The

region of interest is an ellipse or rectangle. In order to compute a descriptor, the

region is transformed into a canonical circle or square. This region of interest

operator is appropriate when there is significant variation in viewing direction.
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One major drawback is that the local maxima of the operator are somewhat

unstable.

2. Maximally Stable Extremal Regions: This region of interest operator is

based on finding extended regions with small variation in intensity and high

contrast boundaries. When they exist these regions are quite stable across

views of the same object, and are appropriate for use under a wide range of

viewing changes. The main drawback of this region of interest operator is the

relatively sparse response on images resulting in relatively few output regions.

Additionally in some cases changes in viewing direction or lighting may change

the relative intensity (eg shadows or relief on surfaces) resulting in instability

or lack of repeatability of the regions.

Figure 3.3 shows a sampling of feature point locations found by the first two

methods with some regions of interest indicated. Figures 3.4, 3.5, 3.6, and 3.7 all

show pairs of regions chosen by the respective region of interest operators. Note that

only corresponding regions that agree closely with the known alignments between

images are considered and a subset of these is shown here.
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Figure 3.3: Top Left: Interest points found by the Harris-Affine operator. The support for
a subset of the features is shown with ellipses. Right: Interest points found by the Maximally
Stable Extremal Region (MSER) detector. The support for a subset of the features is shown
with ellipses.
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Figure 3.4: Rectified paired patches found by the Harris-Affine detector from image sets
showing significant change in viewing direction. Note that the centers of the patches are usually
on edges or at corners, and that the orientations and scales of the patches are often slightly
incorrect.
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Figure 3.5: Rectified paired patches found by the Maximally Stable Region detector from
image sets showing significant change in viewing direction. Note that the centers of the patches
are usually on constant blobs, and there are often variations in the orientations and shapes of
the structure surrounding the blob.
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Figure 3.6: Rectified paired patches found by the Harris-Affine detector from image sets with
fixed viewpoint but varying focus and illumination. Note that although these patches are more
consistent than the ones found in Figure 3.4, there is still variation in orientation and scale.
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Figure 3.7: Rectified paired patches found by the Maximally Stable Region detector from
image sets with fixed viewpoint but varying focus and illumination. Note that although these
patches are more consistent than the ones found in Figure 3.5, there is occasionally variation in
orientation and scale.
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3.3 Observations of Covariance

Each experiment uses a region of interest operator, either Harris-Affine or MSER,

combined with a known correspondence between images to produce a pair of matching

patches. The actual values in a patch are either the gray-scale values of the image in

the region of interest, or the values from an edge detector1. Each patch is reshaped

to form a vector of values and the mean value subtracted. All of these vectors for the

patches are made into a matrix, and another matrix is formed with the corresponding

patches. Each patch occurs in both matrices.

A covariance matrix between gray-scale patches obtained using the Harris-Affine

interest point operator on the set of images with varying viewpoint is shown in Fig-

ure 3.8. This figure is somewhat difficult to interpret directly because the patches

were reshaped into vectors. In order to visualize the result we reshape the covariance

as shown in Figure 3.9. Each small block represents the covariance of all the pixels in

one patch with respect to a particular pixel in the corresponding patch. The location

of the small block specifies the pixel in the corresponding patch. For example the

block at the lower right of the image shows the covariance of the all the pixels in a

patch with the pixel in the lower right of the corresponding patch.

Here we can see that the middle pixel varies with pixels in a relatively tight radius

around the middle of the corresponding patch, and that pixels in the periphery vary

with pixels over a wider range in the corresponding patch. Figure 3.10 shows the

results of fitting the standard deviation for a Gaussian to the pattern in each subplot.

The estimated standard deviation is plotted against the distance from the center of

the patch. In this case note the clear linear structure.

While the pattern shown is consistent with a geometric blur model, we are more

interested in the covariance of edge responses as these are expected to generalize

1The derivative of Gaussian edge detector used in the next section.
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better than pixel intensities. While intensity is probably useful for the image sets

here (each set is of a single object or scene) in the next chapter we will deal with

intraclass variation in objects. Then we will rely on the consistency of edge features

instead of intensity.

3.3.1 Discussion

For image sets with varying viewpoint and view direction using the Harris-Affine

region of interest operator there is a clear increase in the amount of blur moving

away from the center of the patch. Figures 3.10 and 3.13 show that this is true for

the gray-scale patches and for edge patches. For the image sets without change in

viewpoint the rate of increase of blur appears less as can be seen in Figure 3.16. This

indicates that the blur pattern is not simply a result of error in the interest point

operator.

Interestingly when using the MSER interest point operator the covariance is quite

different, as can be seen in Figure 3.17 and 3.18. Looking back to the patches in

Figure 3.5 the prominent feature is a blob at the center of each patch. This results in

a consistently small gradient in the central region and explains the structure. If the

size of the patches is doubled relative to the size determined by the MSER operator,

then the resulting covariance shown in Figure 3.19 and Figure 3.20 shows that the

linear increase in blur actually starts outside the central patch. This shown explicitly

in Figure 3.21.

3.4 Conclusion

This chapter presents observations about the covariance of corresponding patches in

different images of the same object. In some settings the structure of these covariances
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shows a linear increase in blur consistent with the geometric blur model. In addition

the amount of blur depends on how much change in viewing direction there is between

images even using region of interest operators designed to offset this change. As a

corollary it seems that the geometric blur model might be applicable to constructing

feature descriptors for use with the region of interest operators discussed. This is

the first study of this structure, and may be useful for future design and analysis of

region of interest operators and descriptors.
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Figure 3.8: Covariance of intensities between corresponding patches of intensities using Harris-
Affine detector on image sets 1,3, and 4, which show variation in viewpoint.
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Figure 3.9: Covariance of intensities between corresponding patches using Harris-Affine detec-
tor on image sets 1,3, and 4, which show variation in viewpoint. These have been reshaped so
that each small block represents the covariance of all the pixels in one patch with respect to a
particular pixel in the corresponding patch. The location of the small block specifies the pixel
in the corresponding patch. For example the block at the lower right of the image shows the
covariance of the all the pixels in a patch with the pixel in the lower right of the corresponding
patch.
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Figure 3.10: Results of fitting Gaussians to the blur patterns shown in Figure 3.9 of covariance
of intensities between corresponding patches using Harris-Affine detector on image sets 1,3, and
4, which show variation in viewpoint. The estimated standard deviation is plotted against the
distance from the center. The amount of blur in the covariance increases almost linearly.
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Figure 3.11: Covariance of edge response between corresponding patches using Harris-Affine
detector on image sets 1,3, and 4, which show variation in viewpoint.
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Figure 3.12: Covariance of edge response between corresponding patches using Harris-Affine
detector on image sets 1,3, and 4, which show variation in viewpoint. These have been reshaped
so that each small block represents the covariance of all the pixels in one patch with respect to
a particular pixel in the corresponding patch. The location of the small block specifies the pixel
in the corresponding patch. For example the block at the lower right of the image shows the
covariance of the all the pixels in a patch with the pixel in the lower right of the corresponding
patch.
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Figure 3.13: Results of fitting Gaussians to the blur patterns shown in Figure 3.12 of covariance
of edge response between corresponding patches using Harris-Affine detector on image sets 1,3,
and 4, which show variation in viewpoint. The estimated standard deviation is plotted against
the distance from the center. The amount of blur in the covariance increases almost linearly.
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Figure 3.14: Covariance of edge response between corresponding patches using Harris-Affine
detector on image sets 2,5, and 6, which do not show variation in viewpoint, but do vary focus
and illumination.
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Figure 3.15: Covariance of edge response between corresponding patches using Harris-Affine
detector on image sets 2,5, and 6, which do not show variation in viewpoint, but do vary focus
and illumination. These have been reshaped so that each small block represents the covariance
of all the pixels in one patch with respect to a particular pixel in the corresponding patch. The
location of the small block specifies the pixel in the corresponding patch. For example the block
at the lower right of the image shows the covariance of the all the pixels in a patch with the
pixel in the lower right of the corresponding patch.
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Figure 3.16: Results of fitting Gaussians to the blur patterns shown in Figure 3.15 of covariance
of edge response between corresponding patches using Harris-Affine detector on image sets 2,5,
and 6, which do not show variation in viewpoint, but do vary focus and illumination. The
estimated standard deviation is plotted against the distance from the center. The amount of
blur in the covariance increases almost linearly but with a smaller slope than for the image sets
with varying viewpoint as in Figure 3.13.
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Figure 3.17: Covariance of edge response between corresponding patches using he MSER
detector on image sets 1,3, and 4, which show variation in viewpoint.
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Figure 3.18: Covariance of edge response between corresponding patches using the MSER
detector on image sets 1,3, and 4, which show variation in viewpoint. These have been reshaped
so that each small block represents the covariance of all the pixels in one patch with respect to
a particular pixel in the corresponding patch. The location of the small block specifies the pixel
in the corresponding patch. For example the block at the lower right of the image shows the
covariance of the all the pixels in a patch with the pixel in the lower right of the corresponding
patch. The structure in the center results from the MSER region of interest operator placing
regions around blobs of constant intensity. As a result the edge magnitude is small and nearly
random near the center and results in the distinctive pattern shown.
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Figure 3.19: Covariance of edge response between corresponding patches using a version of
the MSER detector, that returns double sized regions, on image sets 1,3, and 4, which show
variation in viewpoint.
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Figure 3.20: Covariance of edge response between corresponding patches using the a version
of the MSER detector, that returns double sized regions, on image sets 1,3, and 4, which
show variation in viewpoint. These have been reshaped so that each small block represents the
covariance of all the pixels in one patch with respect to a particular pixel in the corresponding
patch. The location of the small block specifies the pixel in the corresponding patch. For
example the block at the lower right of the image shows the covariance of the all the pixels in a
patch with the pixel in the lower right of the corresponding patch. The structure in the center
results from the MSER region of interest operator placing regions around blobs of constant
intensity. As a result the edge magnitude is small and nearly random near the center and results
in the distinctive pattern shown.
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Figure 3.21: Results of fitting Gaussians to the blur patterns shown in Figure 3.20 of covari-
ance of edge response between corresponding double patches using the a version of the MSER
detector, that returns double sized regions, on image sets 1,3, and 4, which show variation in
viewpoint. The estimated standard deviation is plotted against the distance from the center.
The amount of blur in the covariance increases linearly but only outside of the central disc.
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Chapter 4

Geometric Blur Descriptor and Image

Classification

4.1 Introduction

Geometric blur offers an efficient way to average a signal over a range of transforms,

but this is still too expensive to use in large scale recognition experiments. This

chapter presents a technique for sub-sampling the geometric blur of a signal in order

to produce a more concise descriptor useful for recognition. Experimental evidence

indicates that the descriptor in fact performs well on a difficult image categorization

task. The categorization task entails identifying images that contain object cate-

gories. Baseline experiments using color and texture produce results much worse that

experiments using geometric blur, suggesting that the success of the geometric blur

descriptor may result from a rough relationship to shape. This relationship is made

more explicit by considering matchings for the purpose of alignment in Chapter 5.

51



Chapter 4. Geometric Blur Descriptor and Image Classification

4.2 Caltech 101 Dataset

The Caltech 101 [Fei-Fei et al., 2004] dataset consists of images from 101 categories

of objects: from accordion to kangaroo to yin-yang, available at [cal, ]. Example

images from 100 of the categories can be seen in figure 4.1. There are a wide variety

of image categories: man-made objects, animals, indoor images and outdoor images,

drawings, etc. In addition many of the images have background clutter. There are

up to 800 images in a category, although many categories contain 50 or fewer images.

Some categories offer more variation and clutter than others as can be seen Figure 4.2

showing the average of the images in each class. Motivated by these images we next

develop a feature descriptor based on geometric blur.

Figure 4.1: Example images from 100 of the categories in the Caltech 101 dataset.
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Figure 4.2: Average images for 100 of the Caltech 101 dataset categories.

4.3 Geometric Blur Descriptor

Feature descriptors and interest point / region of interest operators are the head and

tail respectively of a thorny beast indeed. The results in Chapter 3 show that the

choice of interest point operator effects the resulting variation that must be tolerated

by a feature descriptor.

One benefit of the spatially varying blur is that geometric blur can be used for

localization. Our original work [Berg and Malik, 2001] concentrates mainly on this

aspect of geometric blur. This is quite different from other contemporary descriptors

such as SIFT [Lowe, 1999] that rely on an interest point operator to select similar

locations for potential matches. As a result a somewhat promiscuous interest point

operator can be used in conjunction with geometric blur, and the localization of
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the best match can be left up to the descriptor itself. We will place interest points

anywhere in an image where there is a strong edge response, using sampling with

repulsion to spread interest points throughout the image.

In the case of the Caltech 101 dataset we observe a relatively small amount of

in-plane rotation, and as a results choose a constant region of interest. This does

not preclude a multi-scale approach, it just means that scale will not be determined

locally. Figure 4.3 shows a sparse sample of some interest points in an image as well

as the region of interest and descriptor for one. Figure 5.1 shows the full set of interest

points for an image.

Two design choices are necessary to use geometric blur: the source for sparse

feature channels, and the blur kernel and amount. Once these have been made con-

structing a descriptor is accomplished by sub-sampling the geometric blur for each

channel.

Feature Channels

Motivated by the wide range of appearance in the dataset we base the feature channels

on a coarse scale edge detector. The best results are obtained using the boundary de-

tector of [Martin et al., 2004]. This boundary detector is constructed not to respond

to texture, and produces relatively consistent boundary maps. In addition a simple

and computationally less expensive edge detector based on elongated derivative of

Gaussian filters is used for comparison [Morrone and Burr, 1988]. In both cases edge

detection results are split up by orientation and oriented non-max suppression is ap-

plied producing multiple sparse channels as shown in Figure 4.31.

Blur Kernel

As before we use a simple blur kernel based on a Gaussian. If Ga(x) is a Gaussian

1As an example of an alternate feature channel, our work in [Efros et al., 2003] uses sparse
channels derived from optical flow, followed by “geometric” blur in the temporal domain.
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with standard deviation a then:

Kx(y) = Gα|x|+β(y)

is our blur kernel. The kernel is normalized with respect to the L2 norm.

Sub-sampling

The geometric blur of a signal should be sub-sampled using a pattern that matches the

amount of blur introduced. In particular in the periphery fewer samples are required.

For the kernel we consider above this implies a density of samples decreasing linearly

with distance from the origin. The sampling pattern used in these experiments is

shown in Figure 4.3.

A quick summary of possible steps for computing geometric blur descriptors for

an image follows:

1. Use an edge detector to compute oriented edge channels for the image.

2. Choose interest points using random sampling with repulsion on points with

high edge energy.

3. Compute multiple blurred versions of the channels as described in Section 2.2.5.

4. Around each interest point, for each channel, sample points according to the

dart-board patter in Figure 4.3. These samples should be drawn from the

appropriate blurred version of the channel.

5. These samples form the geometric blur descriptors.

Following the motivation in Chapter 2 the descriptors are compared using nor-

malized correlation.
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sparse oriented edge channels

~
geometric blur idealized signaldescriptor

Figure 4.3: The steps to compute a geometric blur descriptor. Starting with a feature point
on an image (shown in red in the upper left) and a region of interest (indicated in yellow).
The sparse feature channels are cropped out as shown in the upper right. Geometric blur
is applied to each channel (shown here with an idealized signal for clarity) and the signal is
sub-sampled. The final descriptor is the vector of values shown as colored dots at the lower
left.
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4.4 Experiments

We first describe the experimental setup for testing image categorization on the Cal-

tech 101 dataset and then present base-line results using color and texture features.

These are followed by results using the geometric blur descriptors described above.

Basic Setup: Fifteen exemplars were chosen randomly from each of the 101 object

classes and the background class, yielding a total 1530 exemplars. For each class,

we select up to 50 testing images, or “probes” excluding those used as exemplars.

Results for each class are weighted evenly so there is no bias toward classes with more

images. To do this the percentage of queries from a class that are classified correctly

is averaged over all of the classes. This is the same as the mean diagonal entry in the

class confusion matrix. It turns out the standard deviation of this average confusion

over choices of training and testing is quite small, on the order of 2%, as might be

expected from averages over so many draws from somewhat similar distributions.

4.4.1 Experimental results

Whole Image Baseline

The first baseline experiment is motivated by the apparent structure in the average

image for some of the categories in Figure 4.2. All of the images are resized to the

same size and then reshaped into a long vector of pixel values. A simple nearest

neighbor classifier using the L2 norm produces an average recognition rate of 15%.

Somewhat surprisingly it makes no difference whether color information is included

or not.

Color Baseline

The second baseline experiment uses color histograms over the entire image and a

simple nearest neighbor classifier. The color histograms are computed on the a, b

values of the L, a, b color space jointly with 50 bins in each dimension for a total of
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2500 bins. The histograms are smoothed and normalized before comparison using L2.

This results in a an average recognition rate of 13%.

Texture Baseline

Recently Hao Zhang [Zhang, 2005] and others have conducted similar experiments

using texture resulting in recognition rates of 17%.

Geometric Blur Descriptor

We take two approaches to comparing images using geometric blur descriptors. The

first is based on voting. Each feature in a query image is classified as “voting” for one

category using a nearest neighbor classifier based on all the features in the training

set. The image is assigned to the category with the most votes. This results in a

recognition rate of 52%. The second strategy classifies images using nearest neighbor.

The similarity function used is the average similarity between a feature in one image

and its best match in the other. This results in a recognition rate of 40%2.

4.5 Conclusion

We have developed a descriptor based on geometric blur that proves effective in

classifying images of objects in the Caltech 101 dataset. The significantly better

performance using geometric blur features over color or texture features indicate that

the blur descriptor has access to some additional information, possibly related to

rough local shape. Although we primarily emphasize the use of geometric blur in

finding correspondences between shapes as addressed in the following chapter, it is

also at the heart of the best performing image classification schemes for the Caltech

2It is worth noting that nearest neighbor is not necessarily the optimum strategy. Here it serves
as a simple classifier and and is consistent across the various cues. Recent work on learning local
classifiers to improve nearest neighbor classification [Zhang, 2005] improves the results on texture
from 17% to 25%, and for the second geometric blur method from 40% to 56%. Combining geometric
blur and texture improves performance to 59%. These improvements from using a more powerful
classification technique do not alter the relative performance of the cues, and consistently indicate
that by far the most informative cue is the similarity of geometric blur descriptors.
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101 dataset [Zhang, 2005]. In addition it has been used as a local model of shapes to

improve edge detection with mid-level cues, providing the best improvement out of

techniques compared on a dataset of natural images [Ren et al., 2005]. In Chapter 5

a matching framework is built around geometric blur.
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Chapter 5

Alignment as a Discrete Matching

Problem

5.1 Introduction

Our thesis is that recognizing object categories, be they fish or bicycles, is fundamen-

tally a problem of deformable shape matching. We have developed a geometric blur

descriptor that provides some estimate as to whether two regions of an image might

have similar underlying shapes. In order to determine whether there is an alignment

between whole objects we look for matchings between objects that map regions to

similar regions and maintain the rough assembly of the regions.

These two ideas of rough shape: that local regions have similar edge structure and

that the relationship between regions should be maintained, are both consistent with

the idea that shape is that which is preserved under some set of transformations.

We will formulate the matching problem as an optimization, trying to satisfy the

following constraints:

1. Corresponding regions on the two shapes should have similar local structure.
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This will be measured by a geometric blur descriptor.

2. Minimizing geometric distortion: If i and j are points on the model correspond-

ing to i′ and j′ respectively, then the vector from i to j, ~rij should be consistent

with the vector from i′ to j′, ~ri′j′ . If the transformation from one shape to

another is a translation accompanied by pure scaling, then these vectors must

be scalar multiples. If the transformation is a pure Euclidean motion, then the

lengths must be preserved. Etc.

3. Smoothness of the transformation from one shape to the other. This enables us

to interpolate the transformation to the entire shape, given just the knowledge

of the correspondences for a subset of the sample points. We use regularized

thin plate splines to characterize the transformations.

The similarity of point descriptors and the geometric distortion is encoded in a

cost function defined over the space of correspondences. We purposely construct this

to be an integer quadratic programming problem (cf. Maciel and Costeira [Maciel and

Costeira, 2003]) and solve it using fast-approximate techniques1. These approximate

techniques show good performance on the problem instances generated. In addition

a similar framework is used on different low level features in our work with Xiaofeng

Ren [Holub et al., 2005] on localizing humans in still images.

5.2 Related Work

There have been several approaches to shape recognition based on spatial configura-

tions of a small number of keypoints or landmarks. In geometric hashing [Lamdan et

al., 1990], these configurations are used to vote for a model without explicitly solving

1It is worth noting that this formulation is amenable to various probabilistic interpretations,
maximum likelihood estimation for a product of Gaussian models among others.
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for correspondences. Amit et al. [Amit et al., 1997] train decision trees for recognition

by learning discriminative spatial configurations of keypoints. Leung et al. [Leung et

al., 1995], Schmid and Mohr [Schmid and Mohr, 1997], and Lowe [Lowe, 2004] addi-

tionally use gray level information at the keypoints to provide greater discriminative

power. Lowe’s SIFT descriptor has been shown in various studies e.g. [Mikolajczyk

and Schmid., 2003] to perform very well particularly at tasks where one is looking for

identical point features. Recent work extends this approach to category recognition

[Fergus et al., 2003] [Fei-Fei et al., 2003] [Fei-Fei et al., 2004], and to three-dimensional

objects [Rothganger et al., 2003].

It should be noted that not all objects have distinguished key points (think of

a circle for instance), and using key points alone sacrifices the shape information

available in smooth portions of object contours. Approaches based on extracting edge

points are, in our opinion, more universally applicable. Huttenlocher et al. developed

methods based on the Hausdorff distance [Huttenlocher et al., 1993]. A drawback for

our purposes is that the method does not return correspondences. Methods based

on Distance Transforms, such as [Gavrila and Philomin, 1999], are similar in spirit

and behavior in practice. Work based on shape contexts is indeed aimed at first

finding correspondences [Belongie et al., 2001][Mori et al., 2001] and is close to the

spirit of this work. Another approach is the non-rigid point matching of [Chui and

Rangarajan, 2003] based on thin plate splines and “softassign”.

One can do without extracting either keypoints or edge points: Ullman et al

propose using intermediate complexity features, a collection of image patches,[Ullman

et al., 2002].

For faces and cars the class specific detectors of [Viola and Jones, 2001] [Schnei-

derman and Kanade, 2000] [Schneiderman, 2004] have been very successful. These

techniques use simple local features, roughly based on image gradients, and a cascade

of classifiers for efficiency. Recent work on sharing features [Torralba et al., 2004] has
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extended this to multiclass problems.

A distinction of this work is that we are mainly looking for correspondences be-

tween shapes as a whole in the presence of large intraclass variation. As a result we

do not expect individual local features to give correct correspondences in isolation.

5.3 Geometric Distortion Costs

Figure 5.1: An exemplar with a subset of feature points marked (left), the novel “probe” image
with all feature points in white, and the feature points found to correspond with the exemplar
feature points marked in corresponding colors (left center), the exemplar with all its feature
points marked in color, coded by location in the image (right center), and the probe with the
exemplar feature points mapped by a thin plate spline transform based on the correspondences,
again colored by position in the exemplar (far right). See Figure 5.4 for more examples

We consider correspondences between feature points {pi} in model image P and

{qj} in image Q. A correspondence is a mapping σ indicating that pi corresponds to

qσ(i). To reduce notational clutter we will sometimes abbreviate σ(i) as i′, so σ maps

pi to qi′ .

The quality of a correspondence is measured in two ways: how similar feature

points are to their corresponding feature points, and how much the spatial arrange-

ment of the feature points is changed. We refer to the former as the match quality,

and the later as the distortion of a correspondence.

We express the problem of finding a good correspondence as minimization of

a cost function defined over correspondences. This cost function has a term for
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the match quality and for the geometric distortion of a correspondence: cost(σ) =

ωmCmatch(σ) + ωdCdistortion(σ)

Where constants ωm and ωd weigh the two terms. The match cost for a corre-

spondence is:

Cmatch(σ) =
∑

i

c(i, i′) (5.1)

Where c(i, j) is the cost of matching i to j in a correspondence. We use the

negative of the correlation between the feature descriptors at i and j as c(i, j).

We use a distortion measure computed over pairs of model points in an image. This

will allow the cost minimization to be expressed as an integer quadratic programming

problem.

Cdistortion(σ) =
∑
ij

H(i, i′, j, j′) (5.2)

Where H(i, j, k, l) is the distortion cost of mapping model points i and j to k to l

respectively. While there are a wide variety of possible distortion measures, including

the possibility of using point descriptors and other features, in addition to location,

we concentrate on geometric distortion and restrict ourselves to measures based on

the two offset vectors rij = pj − pi and si′j′ = qj′ − qi′ .

Cdistortion(σ) =
∑
ij

distortion(rij, si′j′)
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Our distortion cost is made up of two components:

Cdistortion(σ) =
∑
ij

γda(σ) + (1− γ)dl(σ) (5.3)

da(σ) =

(
αd

|rij|
+ βd

) ∣∣∣∣arcsin

(
si′j′ × rij

|si′j′||rij|

)∣∣∣∣ (5.4)

dl(σ) =
|si′j′| − |rij|
(|rij|+ µd)

(5.5)

where da penalizes the change in direction, and dl penalizes change in length. A

correspondence σ resulting from pure scale and translation will result in da(σ) = 0,

while σ resulting from pure translation and rotation will result in dl(σ) = 0. The

constants αd, βd, µd, are all terms allowing slightly more flexibility for nearby points

in order to deal with local “noise” factors such as sampling, localization, etc. They

should be set relative to the scale of these local phenomena. The constant γ weighs

the angle distortion term against the length distortion term.

Outliers Each point pi, in P , is mapped to a qσ(i), in Q. This mapping auto-

matically allows outliers in Q as it is not necessarily surjective – points qj may not

be the image any point pi under σ. We introduce an additional point qnull and use

σ(i) = null to allow a point pi to be an outlier. We limit the number of points pi

which can be assigned to qnull, thus allowing for outliers in both P and Q.

5.4 Correspondence Algorithm

Finding an assignment to minimize a cost function described by the terms in Equa-

tions 5.2 and 5.1 above can be written as an Integer Quadratic Programming (IQP)
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problem.

cost(x) =
∑
a,b

H(a, b)xaxb +
∑

a

c(a)xa (5.6)

Where the binary indicator variable x has entries xa, that if 1, indicate σ(ai) = aj.

We then have H(a, b) = H(ai, aj, bi, bj), and c(a) = c(ai, aj) from Equations 5.2 and

5.1.

We constrain x to represent an assignment. Write xij in place of xaiaj
. We require∑

j xij = 1 for each i. Futhermore if we allow outliers as discussed in Section 5.3,

then we require
∑

i xinull ≤ k, where k is the maximum number of outliers allowed.

Using outliers does not increase the cost in our problems, so this is equivalent to∑
i xinull = k. Each of these linear constraints are encoded in a row of A and an

entry of b. Replacing H with a matrix having entries Hab = H(a, b) and c with a

vector having entries ca = c(a). We can now write the IQP in matrix form:

min cost(x) =x′Hx + c′x subject to, (5.7)

Ax = b, x ∈ {0, 1}n

5.4.1 Approximation

Integer Quadratic Programming is NP-hard, however specific instances may be easy

to solve. We follow a two step process that results in good solutions to our problem.

We first find the minimum of a linear bounding problem, an approximation to the

quadratic problem, then follow local gradient descent to find a locally minimal as-

signment. Although we do not necessarily find global minima of the cost function in

practice the results are quite good.

We define a linear objective function over assignments that is a lower bound for
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our cost function in two steps. First compute qa = min
∑

b Habxb. Note that from

here on we will omit writing the constraints Ax = b and x ∈ {0, 1}n for brevity.

If xa represents σ(i) = j then qa is a lower bound for the cost contributed to

any assignment by using σ(i) = j. Now we have L(x) =
∑

a(qa + ca)xa as a lower

bound for cost(x) from Equation 5.7. This construction follows [Maciel and Costeira,

2003], and is a standard bound for a quadratic program. Of note is the operational

similarity to geometric hashing.

The equations for qa and L are both integer linear programming problems, but

since the vertices of the constraint polytopes lie only on integer coordinates, they can

be relaxed to linear programming problems without changing the optima, and solved

easily. In fact due to the structure of the problems in our setup they can be solved

explicitly by construction. If n is the length of x, each problem takes O(n) operations

with a very small constant. Computing qa for a = 1 . . . n requires O(n2) time.

We then perform gradient descent changing up to two elements of the assignment

at each step. This takes O(n2) operations per step, and usually requires a very small

number of steps (we put an upper bound on the number of steps). In practice we can

solve problems with m = 50 and n = 2550, 50 possible matches for each of 50 model

points with outliers, in less than 5 seconds.

5.5 Correspondence results

Given a model image P of an object, and a target image Q, possibly containing an

instance of a similar object we find a correspondence between the images as follows:

1. Extract sparse oriented edge maps from each image.

2. Compute features based on geometric blur descriptors at locations with high

edge energy.
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3. Allow each of m feature points from P to potentially match any of the k most

similar points in Q based on feature similarity and or proximity.

4. Construct cost matrices H and c as in Section 5.3.

5. Approximate the resulting Binary Quadratic Optimization to obtain a corre-

spondence. Store the cost of the correspondence as well.

6. Extend the correspondence on m points to a smooth map using a regularized

thin plate spline [Powell, 1995].

See Figures 5.1 and 5.4 for a number of examples. In the leftmost column of

the figures is the image, P , shown with m points marked in color. In the middle

left column is the target image Q with the corresponding points found using our

algorithm. A regularized thin plate spline is fit to this correspondence to map the

full set of feature points on the object in P , shown in the middle right column, to the

target, as shown on the far right column. Corresponding points are colored the same

and points are colored based on their position (or corresponding position) in P – in P

colors are assigned in uniform diagonal stripes, the distortion of these striped in the

far right column of the figure gives some idea of the distortion in the correspondence.

5.6 Recognition Experiments

Our recognition framework is based on nearest neighbors.

Preprocessing: For each object class we store a number of exemplars, possibly

replicated at multiple scales, and compute features for all of the exemplars. Features

are only computed on the support of the objects. At this point object supports are

marked by hand. The following chapter shows how to find them automatically.

Indexing: Extract features from a query image. For each feature point in an

exemplar, find the best matching feature point in the query based on normalized
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correlation of the geometric blur descriptors. The mean of these best correlations is

the similarity of the exemplar to the query. We form a shortlist of the exemplars with

highest similarity to the query image.

Correspondence: Find a correspondence from each exemplar in the shortlist to

the query as described above. Pick the exemplar with the least cost.

We address two object recognition problems, multiclass recognition and face de-

tection. In the multiple object class recognition problem, given an image of an object

we must identify the class of the object and find a correspondence with an exemplar.

We use the Caltech 101 object class dataset consisting of images from 101 classes of

objects: from accordion to kangaroo to yin-yang, available at [cal, ]. This dataset

includes significant intra class variation, a wide variety of classes, and clutter. On

average we achieve 48% accuracy on object classification with quite good localization

on the correctly classified objects. This compares favorably with the original paper

on this dataset producing 16% [Fei-Fei et al., 2004].

We also consider face detection for large faces, suitable for face recognition exper-

iments. Here the task is to detect and localize a number of faces in an image. The

face dataset we use is sampled from the very large dataset used in [Berg et al., 2004]

consisting of news photographs collected from yahoo.com. With only 20 exemplar

faces our generic system provides a ROC curve with slightly better generalization,

and slightly worse false detection rate than the quite effective specialized face detector

of Mikolajczyk [Mikolajczyk, 2002] used in [Berg et al., 2004].

We apply our technique to two different data sets, the Caltech set of 101 object

categories (available here [cal, ]) and a collection of news photographs containing

faces gathered from yahoo.com (provided by the authors of [Berg et al., 2004]). In

the experiments that follow, we utilize the same parameters for both datasets except

for those specifically mentioned.

For all images edges are extracted at four orientations and a fixed scale. For the
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Caltech dataset where significant texture and clutter are present, we use the boundary

detector of [Martin et al., 2004] at a scale of 2% of the image diagonal. With the face

dataset, a quadrature pair of even and odd symmetric Gaussian derivatives suffices.

We use a scale of σ = 2 pixels and elongate the filter by a factor of 4 in the direction

of the putative edge orientation.

Geometric blur features are computed at 400 points sampled randomly on the

image with the blur pattern shown in Figure 4.3. We use a maximum radius of 50

pixels (40 for faces), and blur parameters α = 0.5 and β = 1.

For correspondence we use 50 (40 for faces) points, sampled randomly on edge

points, in the correspondence problem. Each point is allowed to match to any of the

most similar 40 points on the query image based on feature similarity. In addition

for the Caltech 101 dataset we use γ = 0.9 allowing correspondences with significant

variation in scale, while for the faces dataset we handle scale variation partly by

repeating exemplars at multiple scales and use γ = 0.5.
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Figure 5.2: For a probe or query image exemplars are ranked according to feature similarity.
We plot the percentage of probes for which an exemplar of the correct class was found in the
shortlist. Here the first exemplar is correct 41% of the time. Left Full curve. Right Curve up
to shortlist length 100 for detail.
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5.7 Caltech 101 Results

Basic Setup: Fifteen exemplars were chosen randomly from each of the 101 object

classes and the background class, yielding a total 1530 exemplars. For each class, we

select up to 50 testing images, or “probes” excluding those used as exemplars. Results

for each class are weighted evenly so there is no bias toward classes with more images.

The spatial support of the objects in exemplars is acquired from human labeling.

The top entry in the shortlist is correct 41% of the time. One of the top 20 entries is

correct 75% of the time. (Figure 5.2). 2

Recognition and localization: Using each of the top ten exemplars from the

shortlist we find a good correspondence in the probe image. We do this by first

sampling 50 locations on the exemplar object and allowing each to be matched to

its 50 best matching possibilities in the probe with up to 15% outliers. This results

in a quadratic programming problem of dimension 2550. We use a distortion cost

based mainly on the change in angle of edges between vertices (γ = 0.9). This allows

matches with relatively different scales (Figure 5.4 line 3). The exemplar with the

lowest distortion correspondence gives 48% correct classification, at the same time

providing localization. Note that this is using a simple nearest neighbor classifier and

generative models. A baseline experiment comparing grayscale images using SSD

and 1-nearest neighbor classification gives 16%. At press, the best results from the

Caltech group are 40% using discriminative methods [?]. No other techniques have

addressed correspondence at the level of detail presented here.

Multiscale: We compute exemplar edge responses and features at a second scale for

each exemplar resulting in twice as many exemplars. This improves shortlist perfor-

2We note that these results are on the Caltech 101 dataset as presented in 5.7, which contains
some duplicates. Using the currently available dataset [cal, ] which has no duplicates the performance
drops by approximately 3% across all experiments, in this case to 38% and 72% respectively. For
the recognition results using correspondence performance drops from 48% with duplicates to 45%
without duplicates.
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mance by 1% or less, and does not change recognition performance. This illustrates

the lack of scale variation in Caltech 101. The face dataset exhibits a large range of

scale variation.

5.8 Face Detection Results

We apply the same technique to detecting medium to large scale faces for possible

use in face recognition experiments. The face dataset is sampled from the very large

dataset in [Berg et al., 2004] consisting of A.P. news photographs. A set of 20 exemplar

faces split between front, left, and right facing, was chosen from the database by hand,

but without care. The test set was selected randomly from the remaining images

on which the face detector of [Mikolajczyk, 2002] found at least one 86×86 pixels

or larger face. We use the generic object recognition framework described above,

but after finding the lowest cost correspondence we continue to look for others. A

comparison of the ROC curves for our detector and that of [Mikolajczyk, 2002] is

found in Figure 5.3. Our detector has an advantage in generalization, while producing

more false positives. While not up the the level of specialized face detectors, these

are remarkably good results for a face detector using 20 exemplars and a generative

model for classification, without any negative training examples.
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Figure 5.3: Top ROC curves for our face detector using 20 exemplar images of faces (split
between frontal and profile) and the detector of Mikolajczyk. Mikolajczyk’s detector has proven
to be effective on this dataset. simply finding sets of feature points in an image that have a
good correspondence, based on distortion cost, to an exemplar. Good correspondences allow
detection and localization of faces using a simple generative model, no negative examples were
used. bottom Detections from our face detector marked with rectangles.
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Figure 5.4: Each row shows an alignment found using our technique described in section 5.4.
Leftmost is an exemplar with some feature points marked. Left center is a probe image with
the correspondences found indicated by matching colors (all possible feature matches are shown
with white dots). All of the feature points on the exemplar are shown center right, and their
image using a thin plate spline warp based on the correspondence are shown in the right most
image of the probe. Note the ability to deal with clutter (1,6), scale variation(3), intraclass
variation all, also the whimsical shape matching (2), and the semiotic difficulty of matching a
bank note to the image of a bank note painted on another object (5).
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Chapter 6

Models of Variation

6.1 Introduction

Given an engine for correspondence between objects we can build a model for the

variation in an object’s configuration and appearance. This process is largely uncon-

scious to humans. When we identify someone by saying, “Jill has somewhat pointy

ears.” there is no thought given to the process of aligning everyone’s head, building

a model of pointiness for the protruding bit on the side, aligning Jill’s head to the

model and seeing that yes indeed, she does have somewhat pointy ears.

As a proof of concept experiment we will attempt to model the variation in images

of a category of object. The result is a process for taking a number of unsegmented

photographs of instances of a category of object and segmenting out the commonly

occurring object.

6.2 Approach

The procedure for doing this is quite simple. An image is considered as a reference

image. We find a matching from this reference image to each of other images of
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that object category. Given these matchings we identify how well each part of the

reference image matches the other images after alignment. This is a model of the

variation in the appearance of that part of the image after alignment. It is somewhat

subtle, but the object being modeled is the image and the part of the image that is

consistently aligned is the instance of the object category in the image. It would then

be possible to repeat the process using the segmented object and model its variation

over instances.

6.3 Experiment

In the alignment and recognition experiments in Chapter 5, exemplar objects were

hand segmented from their backgrounds. We now show how this can be automated

by finding the repetitive aspects of objects in the example images. Ideally this would

be computed for all images simultaneously. We show that in many cases it is sufficient

to find the similar parts in pairs of images independently.

Starting with a set of example images {Ii} from an object class find the support

of the object in an image Ii0 as follows. For each image Ij where j 6= i0 :

1. Find a correspondence from Ii0 to Ij
1.

2. Use a regularized thin plate spline to map all of the feature points in Ii0 to Ij.

3. For each mapped feature from Ii0 , the quality of the match is the similarity

to the best matching nearby feature in Ij. The median quality of match for a

feature is the measure of how common that feature is in the training images.

Feature points with median quality within 90% of the best for that image are

considered part of the object. Repeating the recognition experiments from Chapter 5,

1Here we allow 40% outliers instead of 15% as used in the recognition experiments.
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the shortlist accuracy improves by 1-4% (Fig. 6.1). While the estimated support is

usually not perfect, recognition performance is similar to that using hand segmented

images, 48%. The process is depicted in Figure 6.1.

The learned models of support reflect a region of the image that is consistent

across training images, as opposed to individual discriminative features. For instance

the cheek on a face is not by itself discriminative for faces, but when considering faces

transformed into alignment the cheek is usually consistent.

6.4 Discussion

The procedure presented is an example of using correspondence to build a model

of variation. It contrasts with almost all current models used for object recognition

which find local features or combinations of local features which are discriminative for

a class. As an example for a face, the eyes and mouth would be locally discriminative.

Here by looking for alignments of whole objects we can identify that the entire face

region is consistent across the set of images.

Still, this is proof of concept procedure is probably not the optimum solution to

automatically segmenting objects in images. In particular this is a purely generative

approach relying on only positive examples, and relying on a sufficient amount of

variation in the background. One problematic example is the “automobiles from the

side” images. The vast majority of these images were taken of parked cars from across

the street. The result is that almost the entire image aligns well when any two images

are compared. This technique can be extended to a more discriminative model where

not only should positive examples match well, but negative examples should match

poorly.
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Figure 6.1: Illustrating automatic model segmentation: One training image (a.) the remaining
14 training images (b.) colors indicate how well on average feature points match after aligning
transforms to each of the other training images (c.) At lower right, the percentage of probes
for which an exemplar of the correct class was found in the shortlist. The blue curve shows
performance with hand segmented exemplars, the red curve shows performance with automat-
ically segmented exemplars. For hand segmented exemplars the first exemplar is correct 41% of
the time, for automatically segmented exemplars 45%. (d.)
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