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Abstract

What do people care about in an image? To drive com-
putational visual recognition toward more human-centric
outputs, we need a better understanding of how people per-
ceive and judge the importance of content in images. In
this paper, we explore how a number of factors relate to hu-
man perception of importance. Proposed factors fall into
3 broad types: 1) factors related to composition, e.g. size,
location, 2) factors related to semantics, e.g. category of ob-
ject or scene, and 3) contextual factors related to the likeli-
hood of attribute-object, or object-scene pairs. We explore
these factors using what people describe as a proxy for im-
portance. Finally, we build models to predict what will be
described about an image given either known image con-
tent, or image content estimated automatically by recogni-
tion systems.

1. Introduction

Consider Figure 1. Despite the relatively small image
space occupied by the people in the boat, when humans de-
scribe the scene they mention both the people (“3 adults and
two children”, “Four people”, “Several people”), and the
boat (“raft”, “canoe”, “canoe”). The giant wooden struc-
ture in the foreground is all but ignored, and the cliffs in the
background are only mentioned by one person. This sug-
gests a significant and interesting bias in perceived content
importance by human viewers!

Now that visual recognition algorithms are starting to
work — we can reliably recognize tens or hundreds of ob-
ject categories [11, 6, 24, 10], and are even beginning to
consider recognition at a human scale [2, 17] — we need
to start looking closely at other questions related to image
understanding. Current systems would treat recognition of
all objects in pictures like Fig. 1 as equally important, de-
spite indications that humans do not do so. Because people
are often the end consumers of imagery, we need to be able
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“A raft with 3 adults and two children in a river,
“Four people in a canoe paddling in a river lined with cliffs.”
“Several people in a canoe in the river.”

Figure 1. An image from the UIUC Pascal sentence dataset [20]
with 3 descriptions written by people.

to adopt human-centric views of recognition, especially in
user applications such as image or video search. For exam-
ple, in response to an image search for “tree”, returning an
image with a tree that no person would ever mention is not
desirable.

In this paper we consider the problem of understanding
and predicting perceived importance of image content. A
central question we pose is: what factors do people inher-
ently use to determine importance? We address this ques-
tion using descriptions written by people as indicators of
importance. For example, consider Fig. 2. Despite con-
taining upwards of 20 different objects, people asked to
describe the image tend to mention quite similar content
aspects: the man, the baby, the beard, and the sling (and
sometimes the kitchen). This suggests there are some un-
derlying consistent factors influencing people’s perception
of importance in pictures.

We study a number of possible factors related to per-



What’s in this image?
man chair
baby boxes
sling cups
ladder water bottle
fridge  wall
table pacifier
glasses beard
shirt watermelon

What do people describe?

“A bearded man stands while holding a small child in a
green sheet.”

“A bearded man with a baby in a sling poses.”

“Man standing in kitchen with little girl in green sack.”
“Man with beard and baby”

“A bearded man is holding a child in a sling.”

o Important content:
man, beard, baby, sling, kitchen

Figure 2. Not all content is created equal — as indicated by the descriptions people write (right). Some objects (e.g. man, baby, sling) seem
to be more important than others (e.g. ladder, table, chair). Some attributes seem to be more important (e.g. beard) than others (e.g. shirt, or
glasses). Sometimes scene words are used (e.g. kitchen), and sometimes they aren’t. We examine a number of compositional and semantic

factors influencing importance.

ceived importance, including: a) factors related to image
composition such as size and location, b) factors related
to content semantics such as category of object (e.g. per-
haps people are more important to viewers than rocks), and
category of scene, and c) factors related to context, includ-
ing object-scene or attribute-object context. The influence
of each factor is first explored independently in a number
of experiments on large datasets with labeled image con-
tent and associated descriptions written by people. Next,
we build models for predicting importance using combina-
tions of our proposed factors. Two scenarios are explored,
models given known image content, and models given es-
timated image content predicted by state of the art visual
recognition methods.

Our paper makes several novel contributions:

e We propose a variety of factors for human perceived
importance, including factors related to composition,
semantics, and context.

e We evaluate the individual influence of each of our
proposed factors on importance using (existing and
gathered) image content labels and descriptions writ-
ten by people.

e We build models to predict what humans describe
given known image content (to understand factor im-
portance), or automatically estimated content (to un-
derstand what is possible using current computer vi-
sion techniques).

A relatively small amount of previous work has investi-
gated content importance [4, 14, 22, 23], but these all take
an object-centric stance, predicting the importance of ob-
jects in the image. We expand the problem to also include
prediction of importance for scenes and attributes. For ex-
ample, an image might portray a particularly iconic exam-
ple of a kitchen (e.g. Fig. 3, 4th picture from left), resulting
in users describing the scene as a “kitchen”. Sometimes
an attribute of an object might be relatively unusual, e.g.
a “pink elephant” or “bearded man”, resulting in all view-
ers describing these salient characteristics (e.g. Fig. 2). We

also expand the types of factors considered, moving from
purely compositional [22, 23, 4] toward factors related to
semantics or context, which we find to be much stronger
indicators of importance than factors related purely to com-
position. Finally, we complete the prediction loop to take
an input image, estimate content using visual recognition,
and make predictions for description.

1.1. Related work

Predicting Importance: Elazary and Itti [4] consider ob-
ject naming order in the LabelMe dataset [21] as a mea-
sure of the interestingness of an object and compare that
to salient locations predicted by computational models of
bottom-up attention. In the ESP game [25], two play-
ers type words related to an image and receive points as
soon as a matching word is obtained. Intuitively, impor-
tant content elements should occur earlier in this process,
but noise, game scheming, and results spread across mul-
tiple short games for each image make translating between
game results and importance somewhat difficult. Hwang et
al [14] use Kernel Canonical Correlation Analysis to dis-
cover a “semantic space” that captures the relationship be-
tween ordered tag cues and image content to improve image
retrieval.

Perhaps most similar to our goals, elegant work by Spain
and Perona [22, 23] tackles the task of examining factors to
predict the order in which objects will be mentioned given
an image. Our work is distinct in a number of ways: 1)
we study whether image contents are included in natural
language descriptions as opposed to studying ordered lists
of objects, 2) we consider how category of object influences
importance, something Spain and Perona [22, 23] do not
consider, 3) we examine importance factors on a larger scale
with datasets of 1000 and 20,000 images, as opposed to 97
images, 4) we explore importance for scenes and attributes
in addition to objects, and 5) we use the output of computer
vision algorithms to predict what is described.
Human-Centric Recognition: Computational recognition
is beginning to move toward examining content from a hu-



man perspective, including the shift away from purely ob-
ject based outputs, toward including attributes [26, 1, 7],
scenes [ 18, 21], or spatial relationships [15, 13]. Other re-
lated work includes attempts to compose natural language
descriptions for images [15, 16, 19, 8]. Especially relevant
— in fact almost the “dual” to this paper — is recent work
in natural language processing predicting whether pieces of
text refer to visual content in an image [3]. However, none
of these approaches focus on predicting perceived impor-
tance and how it could influence what to recognize in (or
describe about) an image.

1.2. Overview of the Approach

We start by describing the data we use for investigating
importance (Sec 2.1), how we gather labels of image con-
tent (Sec 2.2), and how we map from content to descrip-
tions (Sec 2.3). Next we examine the influence of each of
our proposed importance factors, including compositional
(Sec 3.1), semantic (Sec 3.2), and contextual (Sec 3.3). Fi-
nally, we train and evaluate models to predict importance
given known image content (Sec 4.1) or given image con-
tent estimated by computer vision (Sec 4.2).

2. Data, Content Labels, & Descriptions

To study importance in images we need three things:
large datasets consisting of images, ground truth content
in those images, and indicators of perceptually important
content. For the first requirement, we use two large exist-
ing image collections (described in Sec 2.1). For the sec-
ond requirement, we use existing content labels or collect
additional labels using Amazon’s Mechanical Turk service
(Sec 2.2). For the last requirement, we make use of exist-
ing descriptions of the images written by humans. As il-
lustrated in Fig. 2, what people describe when viewing an
image can be a useful proxy for perceived importance. Fi-
nally, we map between what the humans judge to be impor-
tant (things mentioned in descriptions) to the labeled image
content by hand or through simple semantic mapping tech-
niques (Sec 2.3).

2.1. Data

We use two data collections to evaluate our proposed
factors for importance: the ImageCLEF dataset [12], and
the UIUC Pascal Sentence dataset [20]. ImageCLEF is a
collection of 20K images covering various aspects of con-
temporary life, such as sports, cities, animals, people, and
landscapes. The original IAPR TC-12 Benchmark [12] in-
cludes a free-text description for each image. Crucially,
in its expansion (SAIAPR TC-12), each image is also seg-
mented into constituent objects and labeled according to a
set of (275) labels [5]. From here on we will refer to this
dataset, and its descriptions as ImageCLEF. This dataset is
quite large, and allows us to explore some of our proposed

factors at scale. However, some factors are still difficult to
measure well — e.g. scene, or contextual factors — because
they require collecting additional content labels not present
in the dataset, somewhat difficult for the large scale Image-
CLEF data.

Therefore, we use the UIUC Pascal Sentence data set
(UIUC), which consists of 1K images subsampled from the
Pascal Challenge [6] with 5 descriptions written by humans
for each image. As with all Pascal images, they are also an-
notated with bounding box localizations for 20 object cate-
gories. This dataset is smaller than the ImageCLEF dataset,
and is a reasonable size to allow collecting additional la-
bels with Mechanical Turk (Sec 2.2). Crucially this dataset
has also been explored by the vision community, resulting
in object detectors [ 10], attribute classifiers [15], and scene
classifiers [28] for effectively estimating image content.

2.2. Collecting Content Labels

We use three kinds of content labels: object labels, scene
labels, and attribute labels. Object labels are already present
in each of our data collections. ImageCLEF images are seg-
mented and each segment is associated with an object cat-
egory label. In the UIUC dataset there are bounding boxes
around all instances of the 20 PASCAL VOC objects. To
gather additional content labels — for scenes and attributes
in the UTUC dataset — we use Mechanical Turk (MTurk).

To procure scene labels for images, we design a MTurk
task that presents an image to a user and asks them to select
the scene which best describes the image from a list of 12
scenes that cover the UTUC images well. Users can also
provide a new scene label through a text box denoted with
“other,” or can select “no scene observed” if they cannot
determine the scene type. In addition, we ask the users to
rate their categorization, where a rating of 1 suggests that
the scene is only barely interpretable from the image, while
5 indicates that the scene category is obviously depiction.
Each image is viewed and annotated by 5 users.

Our MTurk task for labeling attributes of objects presents
the user with a cropped image around each object. Each of
3430 objects from the UIUC data are presented separately
to labelers along with a set of possible attributes. Three
users select the attributes for each object.

2.3. Mapping Content Labels to Descriptions

We also require a mapping between labeled image con-
tent and text descriptions for each image. For example, if
an image contains 2 people as in Fig. 2, we need to know
that the “man” mentioned in description 1 refers to one of
those people, and the “child” refers to the other person. We
also need mappings between scene category labels and spe-
cific words in the description, as well as between attribute
categories and words (e.g. the “bearded man” refers to a
person with a “has beard” attribute). In the case of a small



Context factors:

Unusual object-scene Pair

Semantic factors:
Object Type

Compositional factors:
Size Location Scene Type & Depiction Strength

“Girl in the street” “A tree in water and a boy with a beard”

“A sail boat on the
ocean.”

“Two men standing on beach.”

“kitchen in house”

Figure 3. We hypothesize 3 different kinds of factors for perceived importance: Compositional factors related to object size or placement,
Semantic factors such as the type of object (people might be inherently more important to a human observer), or obviousness of a scene
category (extremely iconic or strong depictions of a scene might influence whether the scene name will be mentioned), Context factors

such as unusual objects in a scene (trees in the water), or relatively unusual attributes of objects (bearded men).

dataset like the UIUC collection, this mapping can be done
by hand. For the larger ImageCLEF dataset, we devise an
automatic method for mapping. Note that for ImageCLEEF,
only objects are explored due to cost of labeling other con-
tent (Sec 2.2).

For ImageCLEF data, we need to map between objects
labeled in the image, and mentions of those objects in asso-
ciated descriptions. Determining if a label is referred to is
not as simple as matching the nouns in the description with
the label type because the writer might use a synonymous
term (e.g. boy for person) or a more specific term (e.g. “Chi-
huahua” for dog). We use a simple WordNet based measure
of semantic distance [27] and find that this works well (F1
score of 0.94), especially for sibling terms (e.g. “boat” and
“ship”). The hierarchical nature of WordNet also provides
valuable matching capability because image labels tend to
be general (e.g. “person”) while terms used in descriptions
are often more specific (e.g. “cyclist”).

3. Exploring Importance Factors

We propose a number of potential factors for perceived
importance and evaluate how each impacts importance by
studying its relationship with user descriptions. The fac-
tors we examine come in 3 flavors: (a) compositional fac-
tors related to object placement and size (Sec 3.1), (b) se-
mantic factors related object or scene type (and depiction
strength) (Sec 3.2), and (c) context factors related to com-
mon vs unusual (attribute-object or object-scene) content
pairs (Sec 3.3). Figure 3 illustrates each kind of factor.

3.1. Compositional Factors

We consider two types of compositional factors, object
size and location (left two images in Fig 3 demonstrate
their effects). Since we have images with labeled content
— labeled segmentations (ImageCLEF) or bounding boxes
(UIUC) — we can automatically measure the impact of size
and location on whether an object is described by a human
viewer. Size is measured as the object size (number of pix-
els), normalized by image size. Location is measured as the
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Figure 4. Objects further away from the image center are less
likely to be mentioned (left). The bigger an object is, the more
likely it is mentioned (right), unless it is very large. In general
objects from ImageCLEF (red) are less likely to be described than
objects from the UIUC (blue) dataset.

distance from the image center to the object center of mass,
normalized by image size.

Fig. 4 displays the effect of location (left) and size (right)
on description probability for the two datasets (where larger
bin number indicates further from the center, and larger re-
spectively). The results support the intuition that objects
that are larger and closer to the center are more likely to be
described (perceived as important). Note the slight down-
hill slope in the size plot in Fig 4, 3 rightmost bins; this is
presumably because sometimes very large objects are inher-
ently background content and are not mentioned e.g., “sky”
(similar effects were observed in previous work [22, 23]).

3.2. Semantic Factors

In addition to the compositional factors explored in past
work [22, 23], we also examine semantic factors related to
the categories of content present within an image. We study
two kinds of semantic information — how the category of an
object influences the probability that the object will be de-
scribed (Fig. 3, 3rd image), and how the scene category of
an image and strength of its depiction influences the proba-
bility that the scene type will be described (Fig. 3).

Object Type: Intuitively, we hypothesize that some object



Top10 Prob  Lastl0 Prob
firework  1.00 hand 0.15
turtle 0.97 cloth 0.15
horse 0.97 paper 0.13
pool 0.94 umbrella 0.13
airplane  0.94 grass 0.13
bed 0.92 sidewalk 0.11
person 0.92 tire 0.11
whale 0.91 smoke 0.09
fountain  0.89 instrument  0.07
flag 0.88 fabric 0.07

Table 1. Probability of being mentioned when present for various
object categories (ImageCLEF).

Prob-ImageCLEF  Prob-Pascal
Animate 0.91 0.84
Inanimate 0.53 0.55

Table 2. Probability of being mentioned when present for Animate
versus Inanimate objects.

Object Prob  Object Prob
horse 0.99 bus 0.80
sheep 0.99 motorbike 0.75
train 0.99 bicycle 0.69
cat 0.98 sofa 0.59
dog 0.96 dining table  0.56
aeroplane  0.97 tv/monitor 0.54
cow 0.95 car 0.43
bird 0.93 potted plant  0.26
boat 0.90 bottle 0.26
person 0.81 chair 0.26

Table 3. Probability of being mentioned when present for various
object categories (UIUC).

categories are more important to human observers than oth-
ers. For example, being human we expect that “people” in
an image will attract the viewers attention and thus will be
more likely to be described. For example, in Fig. 3, 3rd pic-
ture, the caption reads “Girl in the street” despite the large
and occluding bicycle in front of her.

Table 1 and Table 3 show the 10 most probable object
types and 10 least probable object types from the Image-
CLEF and UIUC datasets respectively, sorted according to
the probability of being described when present in an image.
A few observations can be drawn from these statistics. Very
unusual objects tend to be mentioned; we don’t see fire-
works very often, so when an image contains one it is likely
to be described. The person category also ranks highly in
both lists because of our inherent human tendency to pay
attention to people. In contrast, the objects deemed non-
salient tend to be very common ones (sidewalk, tire), too
generic (smoke, cloth), or part of something more salient
(hand). In the UIUC data (Table 3) we observe that (Ta-

Rating 1 2 3 4 5
‘ Prob | 0.15 | 0.21 ‘ 021 | 0.22 | 0.26
Table 5. Probability of Scene term mentioned given Scene depic-
tion strength (1 implies the scene type is very uncertain, and 5
implies a very obvious example of the scene type, as rated by hu-
man evaluators). Scenes are somewhat more likely to be described
when users provide higher ratings.

ble 3) less semantically salient objects (e.g. chair, potted
plant, bottle) are described with lower probability than more
interesting ones (cow, cat, person, boat).

It is also interesting to note that animate objects are much
more likely to be mentioned when present than inanimate
ones in both datasets (Table 2). From these results one could
hypothesize that observers usually perceive (or capture) the
animate objects as the subject of a photograph and the more
common objects (e.g. sofa, grass, sidewalk) as background
content elements.

Scene Type & Depiction Strength: In Sec 2.1 we de-
scribed our Mechanical Turk experiments to gather scene
labels and depiction strength ratings for the UTUC images.
In addition, we also annotate whether the scene category is
mentioned in each image’s associated descriptions. The re-
lationship between scene type and description is shown in
Table 4. Some scene categories are much more likely to
be described when depicted (e.g. office, kitchen, restaurant)
than others (e.g. river, living room, forest, mountain). In
general we find that the scene category is much more likely
to be mentioned for indoor scenes (ave 0.25) than for out-
door scenes (ave 0.12).

Finally, we also look at the relationship between scene
depiction strength — whether the scene is strongly obvious
to a viewer as rated by human observers — and description.
We expect that the more obvious the scene type (e.g. the
iconic kitchen depiction in Fig. 3), the more likely it is to
be described by a person (e.g. “kitchen in house”). Using
a scene word can be more succinct and informative than
naming all of the objects in the scene, but the scene type
needs to be relatively obvious for an observer to name it.
We observe (Table 5) that scene depiction strength has some
correlation with description probability.

3.3. Context Factors

We examine two kinds of contextual factors and their
influence on description. The first is object-scene context,
hypothesizing that the setting in which an object is depicted
will have an impact on whether or not the object will be
described. We visualize the probability of an object being
described given that it occurs in a particular scene in Fig. 5.
Some interesting observations can be made from this plot.
For example, bicycles in the dining room are more likely to
be described than those on the street (perhaps because they
are in an unusual setting). Similarly, a TV in a restaurant is



‘ office  airport  kitchen dining room field livingroom  street river restaurant sky  forest mountain ‘
‘ 0.29 0.13 0.36 0.21 0.16 0.13 0.18 0.1 0.28 0.18 0.0 0.07 ‘
Table 4. Probability of description for each Scene Type.
S 0 G0 (@0 (08 et et oY et oI Model Features Accuracy% (std)
persn Baseline (ImageCLEF) 57.5(0.2)
bus Log Reg (ImageCLEF) K¢ + K 60.0 (0.1)
e Log Reg (ImageCLEF) K¢ 68.0 (0.1)
ceopare Log Reg (ImageCLEF) K¢ +K:+K] 69.2 (1.4)
potted plant

bicycle Baseline (UTUC-Kn) 69.7 (1.3)
o Log Reg (UIUC-Kn) Ki+K} 69.9 (0.6)
cow Log Reg (UIUC-Kn) K 79.8 (1.4)
o Log Reg (UIUC-Kn) K+ Ki+K! 82.0 (0.9)
e Baseline (UTUC-Est) 76.5 (1.0)
sofa Log Reg (UIUC-Est) E+E! 76.9 (1.1)
o Log Reg (UTUC-Est) ES 78.9 (1.4)
motorbike Log Reg (UTUC-Est) ES+ES+E! 79.52(1.2)

boat

Figure 5. The impact of Object-Scene context on description. Col-
ors indicate the probability of an object being mentioned given
that it occurs in a particular scene category (red - high, blue - low).
Objects in relatively unusual settings (e.g. bicycles in the dining
room) are more often described than those in ordinary settings (e.g.
bicycles in the street).

0s Person

Bumis
preaq
Buipu
Bunes)|
uew
uewom
foq

6|
Aaeq
Bunws|
Buniem
e
Buipjoy

JeH.eom|
sasse|neam|
HIySIeam|
Buipuels
Buipuess|

Figure 6. The impact of Attribute-Object context, showing the
probability of an attribute being mentioned given that it occurs
with a particular object. More unusual attributes (e.g.riding per-
son) tend to be mentioned more often than relatively common at-
tributes (e.g.standing).

more likely to be described than a TV in a living rooms. In
images where the scene is unclear (perhaps because they are
object focused images), the objects present are very likely
to be described.

The second contextual factor we explore is attribute-
object context. Here we compute the probability of an at-
tribute being described given that it occurs as a modifier for
a particular object category. Example results for the “per-
son” and “cow” categories are shown in Fig. 6. Notice that
for person, riding is more likely to be described than other
actions (e.g. sitting, smiling), perhaps because it is a more
unusual activity. Wearing a hat is also more likely to be

Table 6. Accuracy of models for predicting whether a given ob-
ject will be mentioned in an image description on the ImageCLEF
and UIUC datasets given known image content (UIUC-Kn) and
visual recognition estimated image content (UIUC-Est). Features
— K¢ for known object category, K for known object size, K
from known object location, E estimated object category, E; es-
timated object size, F. estimated object location.

described, followed by beard, wearing glasses, and wear-
ing shirts (a similar ordering to how usual or unusual these
attributes of people tend to be). For cows, eating is the
most likely attribute, over actions like standing or sitting
(lying down). Color attributes also seem to be described
frequently. Similar observations were made for the other
object categories.

4. Predicting Importance

We train discriminative models to predict importance —
using presence or absence in a description as proxy for an
importance label. These models predict importance given as
input: known image content (Sec 4.1), or estimates of im-
age content from visual recognition systems (Sec 4.2). For
each input scenario, we train 3 kinds of models: a) models
to predict whether an object will be mentioned, b) models
to predict whether a scene type will be mentioned, and c)
models for predicting whether an attribute of an object will
be mentioned. We use four fold cross validation to train
and estimate the accuracy of our learned models. This is
repeated 10 time with different random splits of the data in
order to estimate the mean and standard deviation of the ac-
curacy estimates. Logistic Regression is used for prediction
with regularization trade-off, C, selected by cross-validation
on subsets of training data.



Model Features  Accuracy% (std)
Baseline (UTUC-Kn) 86.0 (0.2)
Log Reg (UIUC-Kn) K:+K{ 96.6 (0.2)
Log Reg (UIUC-Est) E? 87.4 (1.3)

Table 7. Accuracy of models for predicting whether a particular
scene will be mentioned in the UIUC dataset given known (UIUC-
Kn) and visual recognition estimated image content (UIUC-Est).
Features — K¢ indicates known scene category, K user provided
scene depiction rating, and E< estimated scene descriptor (classi-
fication scores for 26 common scene categories).

Model Features  Accuracy% (std)
Baseline (UIUC-Kn) 96.3 (.01)
Log Reg (UIUC-Kn) K + K 97.0 (.01)
Log Reg (UIUC-Est)y EI+E:S 96.7 (.01)

Table 8. Accuracy of models for predicting whether a specific
attribute type will be mentioned in the UIUC dataset given
known (UIUC-Kn) and visual recognition estimated image content
(UIUC-Est). Features — K known attribute category, K5 known
object category, ES estimated object detection category, F< esti-
mated attribute descriptor (vector of predictions from 21 attribute
classifiers on the object detection window).

4.1. Predicting Importance from Known Content

Object Prediction: We train a model to predict: given an
object and its localization (bounding box), whether it will
be mentioned in descriptions written by human observers.
We first look at a simple baseline, predicting “Yes” for ev-
ery object instance. This provides reasonably good accu-
racy (Table 6), 57.5% for ImageCLEF and 69.7% for UITUC.
Next we train several models using features based on ob-
ject size, location, and type — where size and location are
each encoded as a number € [0, 1], and type is encoded in
a binary vector with a 1 in the kth index indicating the kth
object category (out of 143 categories for ImageCLEF and
20 for UIUC). Results are shown in Table 6, with full model
accuracies (using all features) of 69.2% and 82.0% respec-
tively on the two datasets. Interestingly, we observe that for
both datasets, the semantic object category feature — not in-
cluded in some previous studies predicting importance — is
the strongest feature for predicting whether an object will
be described, while compositional features are less helpful.

Scene Prediction: We train one model for each common
scene category (categories described at least 50 times). For
example, the kitchen model will predict: given an image
and its scene type, whether the term “kitchen” will appear in
the description associated with that image. Positive samples
for a scene model are those images where at least one hu-
man description contains that scene category, negative sam-
ples are the rest. Our descriptor is again a binary vector,
this time encoding image scene type, plus an additional in-
dex corresponding to user provided rating of scene strength.

Results are shown in Table 7. The baseline — always predict-
ing “No” scene mentioned — obtains an accuracy of 86.0%.
Prediction using image scene type and rating improves this
significantly to 96.6%.

Attribute Prediction: We train one model for each com-
mon attribute category (categories described at least 100
times in the UTUC dataset). For example, the “pink” model
will predict: given an object and its appearance attributes,
whether the attribute term “pink” will appear in the descrip-
tion associated with the image containing the detection.
Positive samples for an attribute model are those detections
where at least one human image description contains the
attribute term, negative samples the rest. Our input descrip-
tor for the model is a binary vector encoding both object
category and attribute category (to account for attribute se-
mantics and attribute-object context). Results are shown in
Table 8. The baseline — always predicting “No” attribute
mentioned for all detections — obtains an accuracy of 96.3%
due to apparent human reluctance to utilize attribute terms.
Our model improves prediction accuracy to 97.0%.

4.2. Predicting Importance from Estimated Content

Next, we complete the process so that importance can
be predicted from images using computer vision based es-
timates of image content. Specifically we start with a) an
input image, then b) estimates of image content are made
using state of the art visual recognition methods, and finally
¢) models predict what objects, scenes, and attributes will
be described by a human viewer. Recognition algorithms
estimate 3 kinds of image content on the UIUC dataset: ob-
jects, attributes, and scenes. Objects for the 20 Pascal cate-
gories are detected using Felzenszwalb et al.’s mixtures of
deformable part models [9]. 21 visual attribute classifiers,
including color, texture, material, or general appearance
characteristics [15] are used to compute a 21-dimensional
appearance descriptor for detected objects. We obtain scene
descriptors for each image by computing scores for 26 com-
mon scene categories using the SUN dataset classifiers [28].

Object Prediction: For objects, we train models similar
to Sec 4.1, except using automatically detected object type,
size, and location as input features. Results are shown in
the last 4 rows of Table 6. Note that though the object de-
tectors are somewhat noisy, we get comparable results to
using known ground truth content (and better results than
the baseline of classifying all detections as positive). This
may be because the detectors most often miss detections of
small, background, or occluded objects — those that are also
less likely to be described. Performance of our complete
model is 79.5% compared to the baseline of 76.5%.

Scene Prediction: As in Sec 4.1, for each scene category
we train a model to predict: given an image whether that
scene type will be mentioned in the associated description.
However, here we use our 26 dimensional scene descriptor



as the feature. Results are shown in Table 7 bottom row.
Although the set of scenes used to create our descriptor are
not exactly the same as the set of described scene categories
in the dataset, we are still able to obtain a classification ac-
curacy of 87.4% compared to the baseline of 86.0%.

Attribute Prediction: As in Sec 4.1, for each attribute we
train a model to predict: given an object detection, what
attribute terms will be used in an associated image descrip-
tion. We use our 21d attribute descriptor as a feature vector.
Results are shown in Table 8 bottom. Attribute prediction
based on estimated attribute descriptor and object category
yields 96.7% compared to the baseline of 96.3%.

5. Discussion and Conclusion

We have proposed several factors related to human per-
ceived importance, including factors related to image com-
position, semantics, and context. We first explore the
impact of these factors individually on two large labeled
datasets. Finally, we demonstrate discriminative methods
to predict object, scene and attribute terms in descriptions
given either known image content, or content estimated by
state of the art visual recognition methods. Classification
given known image content demonstrates significant perfor-
mance improvements over baseline predictions. Classifica-
tion given noisy computer vision estimates also produces
smaller, but intriguing, improvements over the baseline.
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