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Abstract

We present an algorithm and implementation for dis-
tributed parallel training of single-machine multiclass
SVMs. While there is ongoing and healthy debate about the
best strategy for multiclass classification, there are some
features of the single-machine approach that are not avail-
able when training alternatives such as one-vs-all, and that
are quite complex for tree based methods. One obstacle to
exploring single-machine approaches on large datasets is
that they are usually limited to running on a single machine!
We build on a framework borrowed from parallel convex op-
timization – the alternating direction method of multipliers
(ADMM) – to develop a new consensus based algorithm for
distributed training of single-machine approaches. This is
demonstrated with an implementation of our novel sequen-
tial dual algorithm (DCMSVM) which allows distributed
parallel training with small communication requirements.
Benchmark results show significant reduction in wall clock
time compared to current state of the art multiclass SVM
implementation (Liblinear) on a single node. Experiments
are performed on large scale image classification including
results with modern high-dimensional features.

1. Introduction

As recognition in computer vision improves, researchers
are pushing to recognize larger spaces of labels, from the
20 classes in Pascal VOC [15] to 1000 classes in the Pascal
LSVRC [30] to 10,000+ classes in ImageNet [12] to over
100,000+ classes in work on learning similarity functions
for web scale retrieval [6]. Even these numbers may seem
small in the future when fine grained recognition using at-
tributes effectively increases the label space by orders of
magnitude [22, 26]. At the same time, high quality classi-
fication seems to require ever higher dimensional features
whether for retrieval [23] or detection [16]. Together these
factors present a formidable computational challenge.

This paper presents a new parallel algorithm for learn-
ing such large scale multiclass classifiers. In particular we
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Figure 1. Upper: Image classification on LSVRC100 (100
classes). Lower: Image classification on LSVRC1000 (1000
classes). Comparison between our DCMSVM multiclass method
and One-vs-all on 16 nodes, and Liblinear’s Crammer & Singer
implementation on a single node. Dashed lines in the uppper plot
indicate progress during optimization (see Sec. 4). Accuracy is
measured on held out test data. Error bars indicate variation in
time and accuracy across 4 different train/test splits (they are too
small to see for DCMSVM in the lower plot).

present the first algorithm for efficiently distributing train-
ing of single machine classifiers, sometimes referred to as
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direct multiclass approaches. Such approaches offer poten-
tial advantages over the more commonly used one versus
all multiclass techniques, but until now have been some-
what less scalable as no effective techniques were available
for distributed parallelization.

This paper makes both a theoretical contribution – deriv-
ing a surprisingly simple sequential dual algorithm for par-
allel optimization of a direct multiclass SVM decision rule
– and an experimental contribution – demonstrating that an
implementation of this approach can significantly improve
accuracy for a given amount of wall clock training time
compared to the state of the art for single-machine meth-
ods using current computer vision data and features. As
a result, single-machine methods can be trained on larger
datasets than had been practical in the past, and can more
used more broadly!

To summarize our contributions we present:

• A new algorithm called Distributed Consensus Multi-
class SVM (DCMSVM) for efficient distributed par-
allel training of “single machine” or direct multiclass
SVMs. Making them much more widely usable. To
our knowledge, this is the first such algorithm.

• An implementation of our algorithm to be released
upon publication.

• Benchmarks on multiclass image classification includ-
ing some using current high dimensional descriptors
from state of the art systems. Results show signif-
icant improvements in wall-clock time and accuracy
versus the very efficient implementation of Crammer
& Singer’s algorithm [10] in Liblinear [21].

2. Background
Single-machine methods train a multiclass classifier by

setting up a single large optimization problem tying to-
gether all parameters and as a result are computationally
expensive. There have been a number of recent papers
exploring parallelization of training for models in related
contexts – for conditional maxent models [24], structured
prediction[25], stochastic gradient descent [31], and others.
Albeit to varying degrees, many of these approaches share a
common idea of training models in parallel and combining
the trained parameters. In fact the first stage of processing
in the method proposed here follows the same procedure.
One perhaps surprising result here is that, at least in some
settings, it is possible to improve upon this initial step – in
terms of the time / accuracy trade-off – by using the com-
bined model as regularization for further optimization. Fur-
thermore this can produce better classifiers than using more
data (cf [31]) or more time in the initial step.

We begin by considering a simple formulation for mul-
ticlass classification where a function fc is learned for

each class c and a data item x is classified into class
argmaxcfc(x). There are a number of ways to learn the
fc, but we first focus on the distinction between one-vs-all
based methods and single machine methods. In one-vs-all,
each fc is trained independently to give a large response to
data items from class c (the “one”) and a small response to
all other classes (the “all” sometimes called the “rest”). The
constraints for one-vs-all training generally have the form
fc(xp) > fc(xn) where xp is any training item with label
c and xn is any training item with label c′ 6= c. Single-
machine approaches link the training of the functions fc to-
gether so that for a training item x of class c, fc(x) > fc′(x)
for c′ 6= c. There are many variations on those ideas – es-
pecially some considering the effects of different ways to
regularize learning using margins – but the basic form of
the constraints are often similar.

The single-machine approach has some potential advan-
tages in weighing different types of errors during training.
For instance it is possible to put more weight on avoid-
ing confusing class a with class b than avoiding confusing
class a with class c. The one-vs-all approach can only ad-
just weights on avoiding confusing class a with “any other
class”. This ability becomes more important when there is
a natural hierarchical structure to classes (e.g. “animals”,
“dogs”, and “black lab” ) where some are more similar
than others and there is a notion of some labels being less
different than others (e.g. “brown lab” and “black lab” vs
“dog” and “cat”). In addition when there are many classes
or classes are sampled sparsely or unevenly single-machine
approaches may have an advantage. See Figure 2 for an ex-
ample of the single-machine approach being more robust to
some classes having a smaller number of training examples.
Performance for the under-sampled classes is significantly
higher for the single-machine approach as compared to one-
vs-all (middle vs right of Figure 2).

Despite these potential advantages, it is much less
straightforward to parallelize single-machine learning. This
is in stark contrast to the one-vs-all approach, which for n
classes easily distributes across as many as n machines or
processors – simply training a single one-vs-all classifier on
each node. Of course intermediate solutions where k one-
vs-all classifiers are trained on each of n

k nodes are also
possible.1

In this work we explore an alternative approach that
looks at training a multiclass classifier as a convex optimiza-
tion problem in a general framework for parallelizing con-
vex optimization, the alternating direction method of mul-
tipliers (ADMM). The result is a new algorithm distribut-
ing training of a single-machine classifier across multiple

1We note that this easy parallelization of one-vs-all approaches still
requires all the data to be available to train each classifier. See [14] for a
clever solution requiring only part of the data on each node at the cost of
some communication overhead.
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Figure 2. C&S is more stable for unbalanced training than 1-vs-
all. See Sec. 4.5.

nodes. Training is distributed across nodes by partitioning
the data, but terms are added to encourage the individual
nodes toward a common (consensus) solution. This ap-
proach (exactly) linearly decreases the amount of data pro-
cessed per node and (nearly) linearly decreases the compu-
tation time per node. Generally training proceeds in stages,
where parameters from the parallel computations are aver-
aged after each stage. The key difference from other work is
that the averages from the previous round are used to regu-
larize the following round. There are several attractive prop-
erties of the specific realization of this approach – it is easy
to adjust the total amount of computation, there is low com-
munication overhead (infrequent communication of model
parameters, never data), and it is straightforward to min-
imize or even eliminate synchronization delays. The key
mathematical insight making this efficient is that there is a
simple formulation for a dual version of the training objec-
tive augmented with the consensus terms. This formulation
is not only simple, but is also amenable to a very similar
treatment as that utilized in efficient sequential dual meth-
ods for SVM training on a single machine.

Generally there is wide interest in scaling discrimina-
tive classifiers like SVMs to deal with increasingly large
datasets. Computation becomes too great to fit on a sin-
gle machine and there have been many pieces of work de-
signed scale SVM training by carefully distributing kernel
computations and values e.g., [5] or splitting classification
into a network of decisions [18, 9] and others. We note that
these approaches and the methods in this paper address dis-
tributing computation across a standard cluster of comput-
ers as opposed to specialized compute infrastructures where

tighter parallelism is effective e.g. multi-core [7] or GPU
style approaches. Nevertheless such techniques may indeed
be used to speed up computation on individual nodes for our
method.

In addition to the methods for efficient parallel learning
of models mentioned in the introduction, Bengio et al. [1]
(c.f. [14]) present an approach for learning a tree structured
classifier to improve efficiency for evaluation with a large
number of image classes – a simpler approach but with simi-
lar motivation to Filter-Trees from [3]. This is entirely com-
patible with our approach which could be seen as an effec-
tive way to scale the learning required for individual nodes
in the decision tree which may still consider several hun-
dred classes and can benefit from training on large amounts
of data. In addition [1] describe the landscape for efficient
large scale classification.

The alternating direction method of multipliers approach
is well researched, see Bertsekas & Tsitsiklis [2] using
ADMM for consensus optimization and Boyd et al. [4] for
a wonderfully clear overview including summary and cita-
tions for convergence results. We know of only one pre-
vious piece of work using an ADMM approach to develop
a consensus algorithm for distributed SVM training from
Forero et al. [17]. Although the motivation and high level
approach have similarities in spirit to our own, there are sev-
eral differences. The main ones being that [17] do not de-
rive or consider algorithmic solutions to the subproblem to
be run on each node, and that they do not consider multi-
class, either weighted or un-weighted. Finally they do not
report results on the accuracy/time trade-off focusing more
on high level capabilities for robust distributed optimiza-
tion. In particular they look carefully at convergence to the
non-distributed result (after a large number of iterations),
which we find is far less relevant than accuracy after a small
number of iterations – at least in the pursuit of reaping a wall
clock time advantage from distributed computation.

In some recent work [27] there is ongoing debate about
whether single-machines are obviously better than one-vs-
all approaches to multiclass classification. We note that they
explicitly exempt large scale problems with very many non-
uniformly sampled classes or classes with varying levels of
distinction from consideration (hierarchies of classes) – ex-
actly the cases we are interested in pursuing for many com-
puter vision problems!

Finally as part of this work we have implemented our ap-
proach inside the Liblinear framework [21] which not only
provides a solid baseline, but also a very flexible and use-
ful environment for developing new algorithms that can be
evaluated at large scale. It includes shrinking which we
used and out-of-core processing which we did not use, but
is compatible with out approach and would allow additional
scaling with lower in-core memory requirements.



3. Consensus Optimization for Training Multi-
class SVMs

We start from Crammer & Singer’s K-class multiclass
SVM formulation[10]:

minimize
w1,··· ,wK

λ

2

K∑
c=1

wT
c wc +

N∑
i=1

ξi,

subject to (wyi
− wc)T xi ≥ 1− ξi − δyi,c

∀i = 1, · · · , N, c = 1, · · · ,K.

(1)

Here each class c has a weight vector wc, and each of the
N training items xi has label yi. The indicator function
δyi,c = 1 if yi = c and 0 otherwise. The variables ξi are
slack variables for each data item, so that only the margin
between the correct class and the most confusing class is pe-
nalized – this is the main novelty of the Crammer & Singer
formulation vs some others. Note that the constraint also
compactly enforces that ξi ≥ 0 when c = yi.

One attractive aspect of the Crammer & Singer work is
an efficient sequential dual algorithm for solving the prob-
lem. However the number of dual variables grows linearly
with the number of training samples with a factor of K, the
number of classes. In the context of image classification,
both K and the number of samples per class can be large,
so we would like to split the data into smaller sets that are
each tractable on a single computing node. We can break
up the objective function over splits of the data. Let

f(λ, w1, . . . , wK , x1, . . . , xN ) =
λ

2

K∑
c=1

wT
c wc +

N∑
i=1

ξi

(2)
so that we can write the objective function in terms of S
splits of the data:

f(λ, w1, . . . , wK , x1, . . . , xN ) (3)

=
S∑

s=1

f(
λ

S
,w1, . . . , wK , x(s−1) N

S +1, . . . , xs N
S

) (4)

We can see that each split will solve for a multiclass clas-
sifier on a subset of the data with a smaller regularization
parameter.

At the same time we want the solutions to all be the
same, a consensus optimization problem.

3.1. Consensus optimization using ADMM

The idea of consensus optimization is to decompose the
original problem into subproblems and solve each of the
subproblems while at the same time constraining the solu-
tion to the subproblem to be equal. For instance if we can
split our objective function f into S functions fs so that

f(w) =
∑S

s=1 fs(w), then we want to solve

minimize
S∑

s=1

fs(ws) (5)

subject to ws − z = 0, s = 1, . . . , S. (6)

Although a simple dual decomposition followed by a dual
descent method can be used to solve the problem, it con-
verges slowly. To help convergence, a linear and quadratic
term are introduced, forming the augmented Lagrangian:

Lρ(w1, . . . , wS , z, y) =
S∑

s=1

(fs(ws) + yT
s (ws − z)

+ (ρ/2)‖ws − z‖22), (7)

where y are the dual variables. Note that the augmentation,
effectively a smoothing term that aids convergence scaled
by ρ, has no effect on the solution, only on the convergence
of the algorithm to follow. It is shown in [4] that at the k-th
iteration zk = wk, so that we can optimize by alternately
solving for:

wk+1
s :=argmin

ws

(fs(ws) + (yk
s )T (ws − wk)

+ (ρ/2)‖ws − wk‖22) (8)

yk+1
s :=yk

s + ρ(wk+1
s − wk+1). (9)

These have a relatively simple interpretation: At the first
part of each iteration, S separate optimizations are per-
formed on the original objective functions fs along with
two terms that encourage consensus — one weighted by the
dual variables y — and the augmenting term weighted by ρ.
The second part of each iteration consists of calculating new
dual variables yk+1

s , and calculating wk+1 the mean of the
wk+1

s . We can consider wk = wk the solution after iteration
k. Note that only the wk, wk+1 need to be communicated
between the independent optimizations — hence the low
communication overhead. So far we have introduced the
standard consensus optimization framework using ADMM
algorithm. We refer the reader to Boyd et al. [4] for a very
clear review.

Substituting one of the objective functions in Equation 4
into the augmented consensus optimization in Equation 7,
and renumbering the data items for each split as 1 . . . N/S
for notational simplicity we have
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Figure 3. Convergence of DCMSVM (on 16 nodes) in terms of
test accuracy (top) and objective value (bottom).

minimize
w1,··· ,wK ,ξ1,··· ,ξN/S

λ

2S

K∑
c=1

wT
c wc +

N/S∑
i=1

ξi

+
K∑

c=1

αT
c (wc − wc) +

ρ

2

K∑
c=1

‖wc − wc‖2,

subject to (wyi − wc)T xi ≥ 1− ξi − δyi,c

∀i = 1, · · · , N/S, c = 1, · · · ,K.

(10)

Each subproblem above differs from the original Cram-
mer & Singer problem due to the extra linear and a quadratic
terms measuring how close the solution is to the consensus.
The problem is still quadratic and convex, and ρ determines
how much to weigh consensus.

3.2. Dual Formulation for Distributed Consensus
Multiclass SVM (DCMSVM)

A number of recent methods devised especially for
Crammer & Singer multiclass SVM have been proposed
[28, 8, 19, 20, 21]. Keerthi et al’s sequential dual method
follows Crammer & Singer’s original approach closely and
demonstrated good performance in experiments [21]. In
search of a similar method to solve our consensus formu-
lation, we derive the Langrangian dual (see the supplemen-
tary material for details) of the subproblem Equation 10.
The dual turns out to have the following simple form:

Algorithm 1 DCMSVM

• Divide the training data into S splits, T1 . . . TS ;
• w ← 0;
• FOR k := 1 TO max iter DO

FOR s := 1 TO S DO IN PARALLEL

β ← 0; ws ← − ρ
λ/S+ρw

UNTIL vi < ε (tolerance parameter), ∀i DO
FOR i := 1 TO |Ts| DO

Compute gc
i using Equation 12;

vi ← max
c

gc
i − min gc

i
c:βc

i <Cc
i

(See Equation 6 in [21]);

If vi < ε, find β′
i using FixedPointAlgorithm[10]

∆βi ← β′
i − βi; βi ← β′

i;
ws

c ← ws
c + ∆βi,cxi;

END

END

w ← 1
S

∑
s ws;

END
• RETURN w;

minimize
β

h(β) =
1
2

K∑
c=1

‖wc(β)‖2 +
∑
i,c

βi,cei,c,

subject to βi,c ≤ Cδyi,c,

K∑
c=1

βi,c = 0,

∀i = 1, · · · , N/S, c = 1, · · · ,K,

(11)

where C = 1/(λ + ρ), ei,c = 1 − δyi,c, and wc(β) =∑N
i=1 βi,cxi−Ctc. Here, tc = αc−ρwc is a constant vector

for each class. Although the relation between the primal
and dual variables, respectively wc and β, are different from
those in Crammer and Singer’s dual formulation [10], the
resemblance in form suggests the sequential dual method
(SDM) introduced in [21].

3.3. Sequential Dual Algorithm for Subproblems in
DCMSVM

We will develop a sequential dual method (SDM) to
solve the subproblem defined by Equation 11, following the
general procedure from Keerthi et al, with the inner-most
optimization following Crammer and Singer’s algorithm as
described in Section 6 of [11]. The idea is to iteratively
consider a data item xj and solve for the corresponding
dual variables βj = (βj,1, . . . , βj,K) (K is the number of
classes) that minimize h(β) with respect to βj . The primal
solution, w = (w1, . . . , wK), is then incrementally updated



using the difference between the new βj and the old. These
along with other efficient implementation techniques such
as shrinking are covered in [21].

The gradient of h(β) is the key to whether a SDM is
possible. In our problem, the gradient, expressed in terms
of w as follows,

gc
i =

∂h(β)
∂βi,c

= wc(β)T xi + ei,c,

∀i = 1, · · · , N/S, c = 1, · · · ,K. (12)

has the same general form as that in [21]. As a result
the sequential update can be applied naturally and the only
change in implementation necessary is to initialize β = 0
and wc = −Ctc. Details are covered in the supplemental
material. This has a simple, rough, interpretation as adding
the consensus and augmenting terms by changing the “cen-
ter” of the dual variables – effectively pushing the solution
toward the average.

We write the the overall algorithm in Algorithm 3.3.

4. Experiments
We perform a series of experiments to verify that our

DCMSVM algorithm is effective for distributed parelleliza-
tion of training a “single-machine” multiclass classifier, and
that it compares favorably with respect to both Liblinear’s
Cramer & Singer implementation on a single node, as well
as the standard one-vs-all, winner take all, approach to mul-
ticlass classification distributed across nodes.

For these experiments we use three datasets. All are sub-
sets of the PASCAL Large Scale Visual Recognition Chal-
lenge dataset (LSVRC) [29], which in turn is part of Ima-
geNet [13]:

• LSVRC100 consists of 100 classes randomly sampled
from LSVRC with 800 images per class. Features are
1000 dimensional SIFT BOW released by LSVRC.

• LSVRC1000 consists of all 1000 classes in LSVRC
with 600 imagees per class. Features are 1000 dimen-
sional SIFT BOW released by LSVRC.

• LSVRC100-HD consists of 100 classes randomly
sampled from LSVRC with 600 images per class. Fea-
tures are 210,000-dimensional local coordinate code
(LCC) features [23].

Each dataset is evenly divided into four folds for cross val-
idation, and each training split is further divided into four
“train”/“validation” subsets for parameter selection. For all
methods, except where noted, the regularization parame-
ter λ for each experiment was chosen to be the best on
the train/validation sets for each experiment cross valida-
tion fold, and the tolerance parameter ε = 0.1.

In the first ADMM iteration of our DCMSVM algorithm,
each node solves the multiclass problem on it’s own split of
the data in parallel. These parameters are averaged and used
in the second iteration following to initialize the subsequent
iteration following Equations 8&9.

Result Plots: We present most of the results in
time/accuracy plots. In those plots, larger markers con-
nected by thick solid lines show results after ADMM iter-
ations in DCMSVM. Smaller markers connected by dotted
lines show progress of the optimization inside each itera-
tion, and are plotted after a certain number of passes of the
sequential dual method through the data (after shrinking)
in each problem . Since sequential dual methods like our
DCMSVM and Liblinear’s Cramer & Singer solver can be
stopped at any given point and output the current estimate
on w, those intermediate results are not difficult to obtain.

The first order result is that for all datasets, our
DCMSVM produces classifiers that are at least as accurate
(and usually more than as accurate) as the baseline 1-vs-all
winner take all approach, and Liblinear’s Cramer & Singer
implementation. Furthermore in terms of wall-clock-time
our approach trains these models more quickly than either
Liblinear on a single node or 1-vs-all distributed on the
same number of nodes as DCMSVM. See Figs. 1 and the
LSVRC100-HD results in Sec. 4.4.

4.1. Convergence and Regularization

ADMM methods are known to converge [4] in the limit,
although sometimes many iterations are required to achieve
high accuracy in approximating the non-distributed objec-
tive. In practice only a few iterations of DCMSVM are
necessary to get good solutions – in all our experiments,
solutions after a few iterations were consistently superior to
the non-distributed solution. A natural question would be
whether the boost in performance is a result of some (pos-
itive) artifact of effective regularization from averaging so-
lutions based on subsets of the data, and whether the same
effect is achievable by adjusting λ in the original single ma-
chine formulation. Our answer to the second question is
“No”. Figure 5 (top) shows that no choice of λ allows the
single-split version (Crammer & Singer) to match the 16
split version of DCMSVM2. We can choose the number of
iterations to run as part of parameter search during cross-
validation on training data – in our experiments cross vali-
dation almost always chooses 2 iterations. In some plots we
show more than two iterations to provide an idea of what
happens as optimization progresses.

4.2. Time/accuracy trade-off and number of splits

As can be seen in all the figures, there is a significant
reduction in wall clock time from distributing training. We

2Fig. 5 also indicates some numerical instability for Liblinear’s C&S
implementation when using small λ.
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Figure 4. Comparison between our DCMSVM split across varying numbers of nodes and Liblinear’s Crammer & Singer implementation
on ILSVRC100. Dashed lines indicate progress during optimization. See Sec. 4.2 for details.

see in Figure 1 (left) that DCMSVM with 16 splits after
two iterations has higher accuracy than Cramer & Singer
on a single node and is about 2.5 times faster in wall clock
time, while doing about 6.5 times as much total compu-
tation. The progress of optimization is shown in many of
the plots and indicates that more aggressive early stopping
could produce even larger speedups. Note that for more
than 16 splits we begin to see a decrease in accuracy af-
ter 2 iterations – although solutions are still significantly
better than a single split. In Figure 4 we include a plot us-
ing 16 splits where each split has 1/8 of the data (instead
of 1/16th of the data). This does not improve the accu-
racy vs wall-clock time trade-off, and careful examination
of the progress during optimization shows that earlier stop-
ping would not help. Even more impressive speedups are
achieved for 1000 classes as shown in Figure 1 (right).

To make a fair comparison, we split the one-vs-all train-
ing tasks across the same number of nodes as used for
DCMSVM. Note that one-vs-all training requires all the
data to train each classifier, unlike DCMSVM which re-
quires only a subset of the data in each split. In this paper
all algorithms run single threaded on a node for the sake of
comparison. All three can be accelerated by taking advan-
tage of parallelism on each node.

4.3. Early Stopping

In almost all experiments early stopping after 5 passes
through the data (with shrinking) was used in the sequen-
tial dual optimization for DCMSVM. In Figure 5 we show
results without early stopping and with early stopping. We
also show the detailed progress of the Cramer & Singer op-
timization, showing that, while early stopping might help
a little, the effects are not as dramatic as for DCMSVM.
We also experimented with early stopping after five passes
for one-vs-all training and found improved speed at the
cost of lower classifier accuracy for both LSVRC100 and
LSVRC1000 datasets. See Fig. 1.

4.4. High Dimensional Image Features

High dimensional features such as local coordinate cod-
ing used by [23] in their winning Pascal Large Scale Visual
Recognition Challenge results have shown good discrimi-
native power in large scale image classification tasks. We
ran DCMSVM on our ILSVRC100-HD dataset to test its
behavior in handling high dimensional features. For this
experiment we use DCMSVM split over 8 nodes, achiev-
ing accuracy of 61.2% in 1509 seconds vs 61.7% in 2959
seconds for Liblinear’s Cramer & Singer implementation.

4.5. Unbalanced Training Set

The LSVRC data provides an almost uniform number of
examples per class – and we use an exactly uniform number
of examples per class in most of our experiments for the pur-
pose of benchmarking – but this is unrealistic in many sce-
narios. In fact unbalanced training data is one of the settings
where a single machine, direct training, method for multi-
class classifiers can have an advantage. To demonstrate this
we train a classifier for the 100 class LSVRC100 dataset
using Cramer & Singer and one-vs-all. We separate the the
classes into a set of 80 and a set of 20. Figure 2 top-left and
bottom-left, show histograms of accuracy for the two sets
of classes with equal training per class. When only 1/5th of
the training data is used for the 20 classes, then accuracy on
those classes reduces dramatically, with larger decrease in
performance for the one-vs-all approach (top-right) than for
the single machine approach (bottom-right).

5. Conclusion
We derived an efficient consensus based distributed par-

allel training algorithm for Crammer & Singer’s multiclass
single-machine SVM formulation. The key mathematical
insight was an efficient dual method for the consensus aug-
mented optimization problem. The approach is validated
with an implementation and extensive evaluation on im-
age classification, showing advantages in both accuracy and



wall-clock training time. This method allows single ma-
chine methods to scale to larger problems than had previ-
ously been possible.
Acknowledgment Funding from Stony Brook University
Office of the Vice President of Research.
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Figure 5. Comparison between our solution split across 16
nodes and Liblinear’s Crammer & Singer implementation on the
ILSVRC100 data. Dashed lines indicate progress during optimiza-
tion. Accuracy is measured on held out data. Error bars indicate
variation in time and accuracy across different train/test splits. Top
Shows that no λ allows a single split to match 16 splits in gener-
alization accuracy, see Sec. 4.1. Bottom Effects of early stopping
over 6 validation splits (λ = 10) see Sec. 4.3.

References
[1] S. Bengio, J. Weston, and D. Grangier. Label embedding trees for

large multi-class tasks. In NIPS, 2010. 3
[2] D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computa-

tion:Numerical Methods. AthenaScientific, 1997. 3
[3] A. Beygelzimer, J. Langford, and P. Ravikumar. Error-correcting

tournaments. ALT, pages 247–262, 2009. 3
[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Dis-

tributed optimization and statistical learning via the alternating direc-
tion method of multipliers. Foundations and Trends(R) in Machine
Learning, 3(1), 2011. 3, 4, 6

[5] E. Y. Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, , H, and Cui.
Psvm: Parallelizing support vector machines on distributed comput-
ers. In NIPS, 2007. 3

[6] G. Chechik, V. Sharma, U. Shalit, and S. Bengio. Large Scale Online
Learning of Image Similarity Through Ranking. JMLR, 11:1109–
1135, Mar. 2010. 1

[7] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and
K. Olukotun. Map-reduce for machine learning on multicore. In
NIPS. 2007. 3

[8] M. Collins, A. Globerson, T. Koo, X. Carreras, and P. L. Bartlett.
Exponentiated gradient algorithms for conditional random fields and
max-margin markov networks. JMLR, 9:1775–1822, June 2008. 5

[9] R. Collobert, S. Bengio, and Y. Bengio. A parallel mixture of svms
for very large scale problems. In NIPS, 2002. 3

[10] K. Cramer and Y. Singer. On the algorithmic implementation of mul-
ticlass kernel-based vector machines. JMLR, 2:265–292, 2001. 2, 4,
5

[11] K. Cramer and Y. Singer. On the learnability and design of output
codes for multiclass problems. Machine Learning, 47, 2002. 5

[12] J. Deng, A. Berg, K. Li, and L. Fei-Fei. What does classifying more
than 10,000 image categories tell us? In ECCV, 2010. 1

[13] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. ImageNet:
A large-scale hierarchical image database. In CVPR, 2009. 6

[14] J. Deng, S. Satheesh, A. Berg, and L. Fei-Fei. Fast and balanced:
Efficient label tree learning for large scale object recognition. In
NIPS, 2011. 2, 3

[15] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-
serman. The pascal visual object classes (voc) challenge. IJCV,
88(2):303–338, June 2010. 1

[16] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan.
Object detection with discriminatively trained part-based models.
TPAMI, 32(9):1627–1645, 2010. 1

[17] P. A. Forero, A. Cano, and G. B. Giannakis. Consensus-based dis-
tributed support vector machines. JMLR, 11:1663–1707, 2010. 3

[18] H. P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vapnik.
Parallel support vector machines: The cascade svm. In NIPS. 2005.
3

[19] T. Joachims. Training linear SVMs in linear time. KDD, pages 217–
226. ACM, 2006. 5

[20] T. Joachims, T. Finley, and C.-N. J. Yu. Cutting-plane training of
structural svms. Machine Learning, 77(1):27–59, 2009. 5

[21] S. S. Keerthi, S. Sundararajan, K. wei Chang, C. jui Hsieh, and C. jen
Lin. A sequential dual method for large scale multi-class linear svms.
In KDD, 2008. 2, 3, 5, 6

[22] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute
and Simile Classifiers for Face Verification. In ICCV, 2009. 1

[23] Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, and K. Yu. Large-scale
Image Classication:Fast Feature Extraction and SVM Training. In
CVPR, 2011. 1, 6, 7

[24] G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker.
Efficient large-scale distributed training of conditional maximum en-
tropy models. In NIPS. 2009. 2

[25] R. McDonald, K. Hall, and G. Mann. Distributed training strategies
for the structured perceptron. In NAACL, 2010. 2

[26] D. Parikh and K. Grauman. Relative attributes. In ICCV, 2011. 1
[27] R. Rifkin and A. Klautau. In defense of one-vs-all classification.

JMLR, 5:101–141, December 2004. 3
[28] C. H. Teo, A. Smola, S. Vishwanathan, and Q. V. Le. A scalable

modular convex solver for regularized risk minimization. In ACM
SIGKDD, pages 727–736, 2007. 5

[29] http://www.image-net.org/challenges/LSVRC/
2010/. 6

[30] http://www.image-net.org/challenges/LSVRC/
2011. 1

[31] M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochas-
tic gradient descent. In NIPS. 2010. 2

http://www.image-net.org/challenges/LSVRC/2010/
http://www.image-net.org/challenges/LSVRC/2010/
http://www.image-net.org/challenges/LSVRC/2011
http://www.image-net.org/challenges/LSVRC/2011

