Supplementary materials

1 Dual derivation of DCMSVM sub-problem

The sub-problem can be formulated in primal form as
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where 6,, . =1 if y; = ¢, 0 otherwise. Notice for ¢ = y; the inequality constraints become §; > 0. Remove the constant terms in (1), we have the
following equivalent problem.
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We introduce multipliers p for inequality constraints and form the Lagrangian.
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Setting the derivatives of the Lagrangian with respect to w. and &; to zero, we get
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Similarly,
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which results in
1 N
W, = m (pwc — e + Z;(éyC — ui,c)xi> .
Substitute (7) into the Lagrangian, we obtain the dual function represented only using dual variables.
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Next we substitute (10) into the dual objective function (11). The constant vector . — ptw, is denoted by ¢..
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Substitue (22) into the dual objective function (11), we have the dual objective function
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Finally, after removing the constants we have the dual problem
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This problem is slightly different from the dual problem for Crammer&Singer[1] SVM formulation, where the coefficient for y; . in the last term of

the objective is just dy, c.

2 Sequential dual method for the sub-problem

Let C = /\%rp, ic=1—="08y, c, Bic =C(0y, c — ptic). Notice
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Also multiplying g(u) by C and adding constant terms will not change the optimal solution. We can rewrite (24) and (25) as
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Rewrite (10) as
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and put it in the dual formulation, which gives (we change the sign of the objective so maximization becomes minimization).
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The gradient of h is given by
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Now our ADMM sub-problem has been reduced to a form very close to what Keerthi et al used in their paper [2]. In fact the only difference
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between the two is that we have an extra constant term Ct,. for each w.(5). Given that these terms are independent of s, and w is incrementally
updated, if we initialize Keerthi et al’s algorithm 2.1 with §; . = 0 (or o = 0 by their notation) and with w, = —Ct,, the solution it gives will be the

solution to our ADMM sub—problem.

Based on this reduction, with a little modification to the part of code for solving the Crammer&Singer SVM, LibLinear package is ready to solve our

ADMM sub-problem. 4
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