
Fast and Balanced: Efficient Label Tree Learning for
Large Scale Object Recognition

Jia Deng1,2, Sanjeev Satheesh1, Alexander C. Berg3, Li Fei-Fei1
Computer Science Department, Stanford University1

Computer Science Department, Princeton University2

Computer Science Department, Stony Brook University3

Abstract

We present a novel approach to efficiently learn a label tree for large scale clas-
sification with many classes. The key contribution of the approach is a technique
to simultaneously determine the structure of the tree and learn the classifiers for
each node in the tree. This approach also allows fine grained control over the ef-
ficiency vs accuracy trade-off in designing a label tree, leading to more balanced
trees. Experiments are performed on large scale image classification with 10184
classes and 9 million images. We demonstrate significant improvements in test
accuracy and efficiency with less training time and more balanced trees compared
to the previous state of the art by Bengio et al.

1 Introduction

Classification problems with many classes arise in many important domains and pose significant
computational challenges. One prominent example is recognizing tens of thousands of visual object
categories, one of the grand challenges of computer vision. The large number of classes renders the
standard one-versus-all multiclass approach too costly, as the complexity grows linearly with the
number of classes, for both training and testing, making it prohibitive for practical applications that
require low latency or high throughput, e.g. those in robotics or in image retrieval.

Classification with many classes has received increasing attention recently and most approaches
appear to have converged to tree based models [2, 3, 9, 1]. In particular, Bengio et al. [1] proposes
a label tree model, which has been shown to achieve state of the art performance in testing. In a
label tree, each node is associated with a subset of class labels and a linear classifier that determines
which branch to follow. In performing the classification task, a test example travels from the root
of the tree to a leaf node associated with a single class label. Therefore for a well balanced tree,
the time required for evaluation is reduced from O(DK) to O(D logK), where K is the number
of classes and D is the feature dimensionality. The technique can be combined with an embedding
technique, so that the evaluation cost can be further reduced to O(D̃ logK +DD̃) where D̃ � D
is an embedded label space.

Despite the success of label trees in addressing testing efficiency, the learning technique, critical to
ensuring good testing accuracy and efficiency, has several limitations. Learning the tree structure
(determining how to split the classes into subsets) involves first training one-vs-all classifiers for all
K classes to obtain a confusion matrix, and then using spectral clustering to split the classes into dis-
joint subsets. First, learning one-vs-all classifiers is costly for large number of classes. Second, the
partitioning of classes does not allow overlap, which can be unnecessarily difficult for classification.
Third, the tree structure may be unbalanced, which can result in sub-optimal test efficiency.

In this paper, we address these issues by observing that (1)determining the partition of classes and
learning a classifier for each child can be performed jointly, and (2)allowing overlapping of class
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labels among children leads to an efficient optimization that also enables precise control of the
accuracy vs efficiency trade-off, which can in turn guarantee balanced trees. This leads to a novel
label tree learning technique that is more efficient and effective. Specifically, we eliminate the one-
vs-all training step while improving both efficiency and accuracy in testing.

2 Related Work

Our approach is directly motivated by the label tree embedding technique proposed by Bengio et
al. in [1], which is among the few approaches that address sublinear testing cost for multi-class
classification problems with a large number of classes and has been shown to outperform alternative
approaches including Filter Tree [2] and Conditional Probability Tree(CPT) [3]. Our contribution is
a new technique to achieve more efficient and effective learning for label trees. For a comprehensive
discussion on multi-class classification techniques, we refer the reader to [1].

Classifying a large number of object classes has received increasing attention in computer vision as
datasets with many classes such as ImageNet [7] become available. One line of work is concerned
with developing effective feature representations [13, 16, 15, 10] and achieving state of the art per-
formances. Another direction of work, explores methods for exploiting the structure between object
classes. In particular, it has been observed that object classes can be organized in a tree-like structure
both semantically and visually [9, 11, 6], making tree based approaches especially attractive. Our
work follows this direction, focusing on effective learning methods for building tree models.

Our framework of explicitly controlling accuracy or efficiency is connected to Weiss et al.’s
work [14] on building a cascade of graphical models with increasing complexity for structured
prediction. Our work differs in that we reduce the label space instead of the model space.

3 Label Tree and Label Tree Learning by Bengio et al.

Here we briefly review the label tree learning technique proposed by Bengio et al. and then discuss
the limitations we attempt to address.

A label tree is a tree T = (V,E) with nodes V and edges E. Each node r ∈ V is associated with
a set of class labels κ(r) ⊆ {1, . . . ,K} . Let σ(r) ⊂ V be the its set of children. For each child c,
there is a linear classifier wc ∈ RD and we require that its label set is a subset of its parent’s, that is,
κ(c) ⊆ κ(r),∀c ∈ σ(r).
To make a prediction given an input x ∈ RD, we use Algorithm 1. We travel from the root until we
reach a leaf node, at each node following the child that has the largest classifier score. There is a
slight difference than the algorithm in [1] in that the leaf node is not required to have only one class
label. If there is more than one label, an arbitrary label from the set is predicted.

Algorithm 1 Predict the class of x given the root node r
s← r.
while σ(s) 6= ∅ do
s← argmaxc∈σ(s) w

T
c x

end while
return an arbitrary k ∈ κ(s) or NULL if κ(s) = ∅.

Learning the tree structure is a fundamentally hard problem because brute force search for the op-
timal combination of tree structure and classifier weights is intractable. Bengio et al. [1] instead
propose to solve two subproblems: learning the tree structure and learning the classifier weights.
To learn the tree structure, K one versus all classifiers are trained first to obtain a confusion matrix
C ∈ RK×K on a validation set. The class labels are then clustered into disjoint sets by spectral clus-
tering with the confusion between classes as affinity measure. This procedure is applied recursively
to build a complete tree. Given the tree structure, all classifier weights are then learned jointly to
optimize the misclassification loss of the tree.

We first analyze the cost of learning by showing that training, with m examples, K classes and D di-
mensional feature, costs O(mDK). Assume optimistically that the optimization algorithm converges
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after only one pass of the data and that we use first order methods that cost O(D) at each itera-
tion, with feature dimensionality D. Therefore learning one versus all classifiers costs O(mDK).
Spectral clustering only depends onK and does not depend onD orm, and therefore its cost is neg-
ligible. In learning the classifier weights on the tree, each training example is affected by only the
classifiers on its path, i.e. O(Q logK) classifiers, where Q� K is the number of children for each
node. Hence the training cost isO(mDQ logK). This analysis indicates that learningK one versus
all classifiers dominates the cost. This is undesirable in large scale learning because with bounded
time, accommodating a large number of classes entails using less expressive and lower dimensional
features.

Moreover, spectral clustering only produces disjoint subsets. It can be difficult to learn a classifier
for disjoint subsets when examples of certain classes cannot be reliably classified to one subset. If
such mistakes are made at higher level of the tree, then it is impossible to recover later. Allowing
overlap potentially yields more flexibility and avoids such errors. In addition, spectral clustering
does not guarantee balanced clusters and thus cannot ensure a desired speedup. We seek a novel
learning technique that overcomes these limitations.

4 New Label Tree Learning

To address the limitations, we start by considering simple and less expensive alternatives of gener-
ating the splits. For example, we can sub-sample the examples for one-vs-all training, or generate
the splits randomly, or use a human constructed semantic hierarchy(e.g. WordNet [8]). However, as
shown in [1], improperly partitioning the classes can greatly reduce testing accuracy and efficiency.
To preserve accuracy, it is important to split the classes such that they can be easily separated. To
gain efficiency, it is important to have balanced splits.

We therefore propose a new technique that jointly learns the splits and classifier weights. By tightly
coupling the two, this approach eliminates the need of one-vs-all training and brings the total learn-
ing cost down to O(mDQ logK). By allowing overlapping splits and explicitly modeling the accu-
racy and efficiency trade-off, this approach also improves testing accuracy and efficiency.

Our approach processes one node of the tree a time, starting with the root node. It partitions the
classes into a fixed number of child nodes and learns the classifier weights for each of the children.
It then recursively repeats for each child.

In learning a tree model, accuracy and efficiency are inherently conflicting goals and some trade-off
must be made. Therefore we pose the optimization problem as maximizing efficiency given a con-
straint on accuracy, i.e. requiring that the error rate cannot exceed a certain threshold. Alternatively
one can also optimize accuracy given efficiency constraints. We will first describe the accuracy con-
strained optimization and then briefly discuss the efficiency constrained variant. In practice, one can
choose between the two formulations depending on convenience.

For the rest of this section, we first express all the desiderata in one single optimization prob-
lem(Sec. 4.1), including defining the optimization variables(classifier weights and partitions), objec-
tives(efficiency) and constraints(accuracy). Then in Sec. 4.2& 4.3 we show how to solve the main
optimization by alternating between learning the classifier weights and determining the partitions.
We then summarize the complete algorithm(Sec. 4.4) and conclude with an alternative formulation
using efficiency constraints(Sec. 4.5).

4.1 Main optimization

Formally, let the current node r represent classes labels κ(r) = {1, . . . ,K} and let Q be the
specified number of children we wish to follow. The goal is to determine: (1)a partition matrix
P ∈ {0, 1}Q×K that represents the assignment of classes to the children, i.e. Pqk = 1 if class label
k appear in child q and Pqk = 0 otherwise; (2)the classifier weights w ∈ RD×Q, where a column
wq is the classifier weights for child q ∈ σ(r),
We measure accuracy by examining whether an example is classified to the correct child, i.e. a child
that includes its true class label. Let x ∈ RD be a training example and y ∈ {1, . . . ,K} be its true
label. Let q̂ = argmaxq∈σ(r) w

T
q x be the child that x follows. Given w,P, x, y, the classification
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loss at the current node r is then
L(w, x, y, P ) = 1− P (q̂, y). (1)

Note that the final prediction of the example is made at a leaf node further down the tree, if the
child to follow is not already a leaf node. Therefore L is a lower bound of the actual loss. It is thus
important to achieve a smaller L because it could be a bottleneck of the final accuracy.

We measure efficiency by how fast the set of possible class labels shrinks. Efficiency is maximized
when each child has a minimal number of class labels so that an unambiguous prediction can be
made, otherwise we incur further cost for traveling down the tree. Given a test example, we define
ambiguity as our efficiency measure, i.e. the size of label set of the child that the example follows,
relative to its parent’s size. Specifically, given w and P , the ambiguity for an example x is

A(w, x, P ) =
1

K

K∑
k=1

P (q̂, k). (2)

Note that A ∈ [0, 1]. A perfectly balanced K-nary tree would result in an ambiguity of 1/K for all
examples at each node.

One important note is that the classification loss(accuracy) and ambiguity(efficiency) measures as
defined in Eqn. 1 and Eqn. 2 are local to the current node being considered in greedily building the
tree. They serve as proxies to the global accuracy and efficiency of the entire tree. For the rest of
this paper, we will omit the “local” and “global” qualifications if it is clear according to the context.

Let ε > 0 be the maximum classification loss we are willing to tolerate. Given a training set
(xi, yi), i = 1, . . . ,m, we seek to minimize the average ambiguity of all examples while keeping
the classification loss below ε, which leads to the following optimization problem:

OP1. Optimizing efficiency with accuracy constraints.

minimize
w,P

1

m

m∑
i=1

A(w, xi, P )

subject to
1

m

m∑
i=1

L(w, xi, yi, P ) ≤ ε

P ∈ {0, 1}Q×K .
There are no further constraints on P other than that its entries are integers 0 and 1. We do not
require that the children cover all the classes in the parent. It is legal that one class in the parent
can be assigned to none of the children, in which case we give up on the training examples from the
class. In doing so, we pay a price on accuracy, i.e. those examples will have a misclassification loss
of 1. Therefore a partition P with all zeros is unlikely to be a good solution. We also allow overlap
of label sets between children. If we cannot classify the examples from a class perfectly into one
of the children, we allow them to go to more than one child. We pay a price on efficiency since we
make less progress in eliminating possible class labels. This is different from the disjoint label sets
in [1]. Overlapping label sets gives more flexibility and in fact leads to simpler optimization, as will
become clear in Sec. 4.3.

Directly solving OP1 is intractable. However, with proper relaxation, we can alternate between
optimizing over w and over P where each is a convex program.

4.2 Learning classifier weights w given partitions P

Observe that fixing P and optimizing over w is similar to learning a multi-class classifier except for
the overlapping classes. We relax the loss L by a convex loss L̃ similar to the hinge loss.

L̃(w, xi, yi, P ) = max{0, 1 + max
q∈Ai,r∈Bi

{wTr xi − wTq xi)}}

where Ai = {q|Pq,yi = 1} and Bi = {r|Pr,yi = 0}. Here Ai is the set of children that contain
class yi and Bi is the rest of the children. The responses of the classifiers in Ai are encouraged to
be bigger than those in Bi, otherwise the loss L̃ increases. It is easily verifiable that L̃ upperbounds
L. We then obtain the following convex optimization problem.
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OP2. Optimizing over w given P .

minimize
w

λ

Q∑
q=1

‖wq‖22 +
1

m

m∑
i=1

L̃(w, xi, yi, P )

Note that here the objective is no longer the ambiguity A. This is because the influence of w on A
is typically very small. When the partition P is fixed, w can lower A by classifying examples into
the child with the smallest label set. However, the way w classifies examples is mostly constrained
by the accuracy cap ε, especially for small ε. Empirically we also found that in optimizing L̃ over
w, A remains almost constant. Therefore for simplicity we assume that A is constant w.r.t w and
the optimization becomes minimizing classification loss to move w to the feasible region. We also
added a regularization term

∑Q
q=1 ‖wq‖22.

4.3 Determining partitions P given classifier weights w

If we fix w and optimize over P , rearranging terms gives the following integer program.

OP3. Optimizing over P .

minimize
P

A(P ) =
∑
q,k

Pqk
1

mK

m∑
i=1

1(q̂i = q)

subject to 1−
∑
q,k

Pqk
1

m

m∑
i=1

1(q̂i = q ∧ yi = k) ≤ ε

Pqk ∈ {0, 1},∀q, k.

Integer programming in general is NP-hard. However, for this integer program, we can solve it
by relaxing it to a linear program and then taking the ceiling of the solution. We show that this
solution is in fact near optimal by showing that the number of non-integers can be very few, due
to the fact that the LP has few constraints other than that the variables lie in [0, 1] and most of the
[0, 1] constraints will be active. Specifically we use Lemma 4.1(proof in supplementary materials)
to bound the rounded LP solution in Theorem 4.2.

Lemma 4.1. For LP problem
minimize

x
cTx

subject to Ax ≤ b
0 ≤ x ≤ 1,

where A ∈ Rm×n,m < n, if it is feasible, then there exists an optimal solution with at most m
non-integer entries and such a solution can be found in polynomial time.

Theorem 4.2. LetA∗ be an optimal value of OP3. A solution P ′ can be computed within polynomial
time such that A(P ′) ≤ A∗ + 1

K .

Proof. We relax OP3 to an LP by replacing the constraint Pqk ∈ {0, 1},∀q, k with Pqk ∈
[0, 1],∀q, k. Apply Lemma 4.1 and we obtain an optimal solution P ′′ of the LP with at most 1
non-integer. We take the ceiling of the fraction and obtain an integer solution P ′ to OP3. The value
of the LP, a lower bound of A∗, increases by at most 1

K , since 1
mK

∑m
i=1 1(q̂i = q) ≤ 1

K ,∀q.

Note that the ambiguity is a quantity in [0, 1] and K is the number of classes. Therefore for large
numbers of classes the rounded solution is almost optimal.

4.4 Summary of algorithm

Now all ingredients are in place for an iterative algorithm to build the tree, except that we need to
initialize the partition P or the weights w. We find that a random initialization of P works well in
practice. Specifically, for each child, we randomly pick one class, without replacement, from the
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label set of the parent. That is, for each row of P , randomly pick a column and set the column to 1.
This is analogous to picking the cluster seeds in the K-means algorithm.

We summarize the algorithm for building one level of tree nodes in Algorithm 2. The procedure is
applied recursively from the root. Note that each training example only affects classifiers on one
path of the tree, hence the training cost is O(mD logK) for a balanced tree.

Algorithm 2 Grow a single node r
Input: Q,ε and training examples classified into node r by its ancestors.
Initialize P . For each child, randomly pick one class label from the parent, without replacement.
for t = 1→ T do

Fix P , solve OP2 and update w.
Fix w, solve OP3 and update P .

end for

4.5 Efficiency constrained formulations

As mentioned earlier, we can also optimize accuracy given explicit efficiency constraints. Let δ be
the maximum ambiguity we can tolerate. Let OP1’, OP2’, OP3’ be the counterparts of OP1, OP2
and OP3. We obtain OP1’ by replacing ε with δ and switching L(w, xi, yi, P ) and A(w, xi, p) in
OP1. OP2’ is the same as OP2 because we also treat A as constant and minimize the classification
loss L unconstrained. OP3’ can also be formulated in a straightforward manner, and solved nearly
optimally by rounding from LP(Theorem 4.3).

Theorem 4.3. Let L∗ be the optimal value of OP3’. A solution P ′ can be computed within polyno-
mial time such that L(P ′) ≤ L∗ +maxk ψk, where ψk = 1

m

∑m
i=1 1(yi = k), is the percentage of

training examples from class k.

Proof. We relax OP3’ to an LP. Apply Lemma 4.1 and obtain an optimal solution P ′′ with at most
1 non-integer. We take the floor of P ′′ and obtain a feasible solution P ′ to OP3′. The value of
the LP, a lower bound of L∗, increases by at most maxk ψk, since 1

m

∑
i 1(q̂i = q ∧ yi = k) ≤

1
m

∑m
i=1 1(yi = k) ≤ maxk ψk,∀k, q.

For uniform distribution of examples among classes, maxk ψk = 1/K and the rounded solution
is near optimal for large K. If the distribution is highly skewed, for example, a heavy tail, then
the rounding can give poor approximation. One simple workaround is to split the big classes into
artificial subclasses or treat the classes in the tail as one big class, to “equalize” the distribution.
Then the same learning techniques can be applied. In this paper we focus on the near uniform case
and leave further discussion on the skewed case as future work.

5 Experiments

We use two datasets for evaluation: ILSVRC2010 [12] and ImageNet10K [6]. In ILSVRC2010,
there are 1.2M images from 1k classes for training, 50k images for validation and 150k images
for test. For each image in ILSVRC2010 we compute the LLC [13] feature with SIFT on a 10k
codebook and use a two level spatial pyramid(1x1 and 2x2 grids) to obtain a 50k dimensional feature
vector. In ImageNet10K, there are 9M images from 10184 classes. We use 50% for training, 25%
for validation, and the rest 25% for testing. For ImageNet10K, We compute LLC similarly except
that we use no spatial pyramid, obtaining a 10k dimensional feature vector.

We use parallel stochastic gradient descent(SGD) [17] for training. SGD is especially suited for
large scale learning [4] where the learning is bounded by the time and the features can no longer fit
into memory (the LLC features take 80G in sparse format). Parallelization makes it possible to use
multiple CPUs to improves wall time.

We compare our algorithm with the original label tree learning method by Bengio et al. [1]. For
both algorithms, we fix two parameters, the number of children Q for each node, and the maximum
depth H of the tree. The depth of each node is defined as the maximum distance to the root(the root
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T32,2 T10,3 T6,4 T101,2

Acc% Ctr Ste Acc% Ctr Ste Acc% Ctr Ste Acc% Ctr Ste

Ours 11.9 259 10.3 8.92 104 18.2 5.62 50.2 31.3 3.4 685 32.4
[1] 8.33 321 10.3 5.99 193 15.2 5.88 250 9.32 2.7 1191 32.4

Table 1: Global accuracy(Acc), training cost(Ctr), and test speedup(Ste) on ILSVRC2010 1K
classes (T32,2, T10,3, T6,4) and on ImageNet10K(T101,2) classes. Training and test costs are mea-
sured as the average number of vector operations performed per example. Test speedup is the one-
vs-all test cost divided by the label tree test cost. Ours outperforms the Bengio et al. [1] approach
by achieving comparable or better accuracy and efficiency, with less training cost, compared with
the training cost for Bengio et al. [1] with the one-vs-all training cost excluded.

Tree T32,2 T10,3 T6,4

Depth 0 1 0 1 2 0 1 2 3

Classification loss(%) Ours 49.9 76.1 34.6 52.6 71.2 30.0 48.8 55.9 64.4
Bengio [1] 76.6 64.8 62.8 53.7 65.3 56.2 34.8 37.3 65.8

Ambiguity(%) Ours 6.49 1.55 18.9 18.4 2.96 24.7 24.1 23.5 7.15
Bengio [1] 6.49 1.87 19.0 25.9 2.95 24.7 59.6 56.5 2.02

Table 2: Local classification loss(Eqn. 1) and ambiguity(Eqn. 2) measured at different depth levels
for all trees on the ILSVRC2010 test set(1k classes). T6,4 of Bengio et al. is less balanced(large am-
biguity). Our trees are more balanced as efficiency is explicitly enforced by capping the ambiguity
throughout all levels.

has depth 0). We require every internal node to split into Q children, with two exceptions: nodes at
depth H − 1(parent of leaves) and nodes with fewer than Q classes. In both cases, we split the node
fully, i.e. grow one child node per class. We use TQ,H to denote a tree built with parameters Q and
H . We set Q and H such that for a well balanced tree, the number of leaf nodes QH approximate
the number of classes K.

We evaluate the global classification accuracy and computational cost in both training and test. The
main costs of learning consist of two operations, evaluating the gradient and updating the weights,
i.e. vector dot products and vector additions(possibly with scaling). We treat both operations as
costing the same 1. To measure the cost, we count the number of vector operations performed per
training example. For instance, running SGD one-versus-all(either independent or single machine
SVMs [5]) for K classes costs 2K per example for going through data once, as in each iteration all
K classifiers are evaluated against the feature vector(dot product) and updated(addition).

For both algorithms, we build three trees T32,2, T10,3, T6,4 for the ILSVRC2010 1k classes and build
one tree T101,2 for ImageNet10K classes. For the Bengio et al. method, we first train one-versus-all
classifiers with one pass of parallel SGD. This results in a cost of 2000 per example for ISVRC2010
and 20368 for ImageNet10K. After forming the tree skeleton by spectral clustering using confusion
matrix from the validation set, we learn the weights by solving a joint optimization(see [1]) with two
passes of parallel SGD. For our method, we do three iterations in Algorithm 2. In each iteration,
we do one pass of parallel SGD to solve OP3’, such that the computation is comparable to that of
Bengio et al. (excluding the one-versus-all training). We then solve OP3’ on the validation set to
update the partition. To set the efficiency constraint, we measure the average (local) ambiguity of
the root node of the tree generated by the Bengio et al. approach, on the validation set. We use it as
our ambiguity cap throughout our learning, in an attempt to produce a similarly structured tree.

We report the test results in Table 1. The results show that for all types of trees, our method achieves
comparable or significantly better accuracy while achieving better speed-up with much less training
cost, even after excluding the 1-versus-all training in Bengio et al.’s. It’s worth noting that for the
Bengio et al. approach, T6,4 fails to further speed-up testing compared to the other shallower trees.
The reason is that at depth 1(one level down from root), the splits became highly imbalanced and
does not shrink the class sets faster enough until the height limit is reached. This is revealed in
Table 2, where we measure the average local ambiguity(Eq. 2) and classification loss(Eq. 1) at each
depth on the test set to shed more light on the structure of the trees. Observe that our trees have

1This is inconsequential as a vector addition always pairs with a dot product for all training in this paper.
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Figure 1: Comparison of partition matrices(32 × 1000) of the root node of T32,2 for our ap-
proach(top) and the Bengio et al. approach(bottom). Each entry represents the membership of a
class label(column) in a child(row). The columns are ordered by a depth first search of WordNet.
Columns belonging to certain WordNet subtrees are marked by red boxes.

Figure 2: Paths of the tree T6,4 taken by two test examples. The class labels shown are randomly
subsampled to fit into the space.

almost constant average ambiguity at each level, as enforced in learning. This shows an advantage
of our algorithm since we are able to explicitly enforce balanced tree while in Bengio et al. [1] no
such control is possible, although spectral clustering encourages balanced splits.

In Fig. 1, we visualize the partition matrices of the root of T32,2, for both algorithms. The columns
are ordered by a depth first search of the WordNet tree so that neighboring columns are likely to
be semantic similar classes. We observe that for both methods, there is visible alignment of the
WordNet ordering. We further illustrate the semantic alignment by showing with the paths of our
T6,4 traveled by two test examples. Also observe that our partition is notably “noisier”, despite that
both partitions have the same average ambiguity. This is a result of overlapping partitions, which
in fact improves accuracy(as shown in Table 2) because it avoids the mistakes made by forcing all
examples of a class commit to one child.

Also note that Bengio et al. showed in [1] that optimizing the classifiers on the tree jointly is signif-
icantly better than independently training the classifiers for each node, as it encodes the dependency
of the classifiers along a tree path. This does not contradict our results. Although we have no explicit
joint learning of classifiers over the entire tree, we train the classifiers of each node using examples
already filtered by classifiers of the ancestors, thus implicitly enforcing the dependency.

6 Conclusion

We have presented a novel approach to efficiently learn a label tree for large scale classification with
many classes, allowing fine grained efficiency-accuracy tradeoff. Experimental results demonstrate
more efficient trees at better accuracy with less training cost compared to previous work.
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