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Today’s lecture

Machine learning background
Learning and Loss
Optimization
Parameterization



Very general take on Machine Learning

« At a high level, this is like the scientific method:
— observe some data
— make some hypotheses (choose model)
— perform experiments (fit and evaluate model)
— (profitl)

* Machine learning focuses on the mathematical
formulations and computation



Problems with learning a function from dato

f(x)

(training) data in red
Problem: predict y=f(x)
Possible f's shown in blue and green

Need something to limit possibilities!

+ (possibilities are the hypothesis space)

From Poggio & Smale 2003



Error

Linear Classifier
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From Hastie, Tibshirani, Friedman Book

(training) data in wheat/blue

Problem: predict y=f(x,,x,)>0

Possibilities for f(x;,X,)=0 shown in black




Learning/fitting Is A process...

Estimating the probability that a tossed coin comes up heads...

Xi € {0,1} The i’th coin toss
«— Computation

Estimator based on n tosses

Gn,g = {x” € {0, l}n . |§n(x”) — 9| < 8} Estimate is within epsilon

Bn,g = {x" € {0, l}n : IHH(x") - 0| > 8} Estimate is not within epsilon

P2 (Bye) = PP (10,(X™) - 0] > £) <2672

Probability of being bad is inversely proportional to the number of samples...
(the underlying computation is an example of a tail bound)

From Raginsky notes



Bad news for more dimensions

« Estimating a single variable (e.g. bias of a
coin) within a couple of percent might take
~100 samples...

« Estimating a function (e.g. the probability of
being in class 1) for an n-dimensional binary
variable requires estimating ~2" variables.
100x2" can be large.

* In most cases our game will be finding ways to
restrict the possibilities for the function and to
focus on the decision boundary (where f(x)=0)
instead of f(x) itself.



Reading

Maxim Raginksy’s introduction notes for statistical machine learning:
http://maxim.ece.illinois.edu/teaching/fall14/notes/intro.pdf

Poggio & Smale “The mathematics of learning: dealing with data”, Notices of the American
Mathematical Society, vol. 50, no. 5, pp. 537-544, 2003.

http://cbcl.mit.edu/projects/cbcl/publications/ps/notices-ams2003refs.pdf

Hastie, Tibshirani, Friedman Elements of Statistical Learning (the course textbook)
Chapters 1 and 2
http://statweb.stanford.edu/~tibs/ElemStatl earn/




Various Definitions for Machine Learning

Study of algorithms that
Improve their performance, P, at some task, T,
with experience, E. <P,T,E>

a scienftific discipline that explores
the construction and study of algorithms that
can learn from data.

Study of how to build/learn functions
(programs) to predict something.

Data, Formulations, Computation



Y (label)

data
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1 D Data with labels -1,1

(indicated by color and y-
axis position)

0/1 Loss and Hinge Loss

(y-axis is loss,
X-axis is decision
boundary)
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boundary
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Quick messages

0/1-Loss counts actual errors, no partial credit
Hinge-Loss is not the same as 0/1 Loss

Hinge-Loss is greater when farther from correct the
decision

0/1-Loss has discontinuous first derivative
0/1-Loss is non-convex, Hinge-Loss is convex ()

* This may depend on parameters/parameterization of
the decision functions.



those y;s with input x; = z. Since there is typically at most one observation
at any point z, we settle for

A

f(z) = Ave(yi|z; € Ni(x)), (2.14)

2.4 Statistical Decision TheOI‘y where “Ave” denotes average, and Ni(z) is the neighborhood containing
the k points in 7 closest to . Two approximations are happening here:

In this section we develop a small amount of theory that provides a frame-
work for developing models such as those discussed informally so far. We
first consider the case of a quantitative output, and place ourselves in the e conditioning at a point is relaxed to conditioning on some region
world of random variables and probability spaces. Let X € IRP denote a “close” to the target point.

real valued random input vector, and ¥ € IR a real valued random out- . ) o . .
put variable, with joint distribution Pr(X,Y). We seck a function f(X) For large training sample size N, the points in the nelghborhood are likely
for predicting Y given values of the input X. This theory requires a loss to be close to z, and as k' gets lar‘gg the average .w111 get more stgblg.
function L(Y, f(X)) for penalizing errors in prediction, and by far the most In fact, under mild regularity conditions on the joint probability distri-

common and convenient is squared error loss: L(Y, f(X)) = (Y — f(X))2. bution Pr(X, ), one can S,h ow that 23 N,k = oo such thz,it K/ N — 0
. o . f(z) — E(Y|X = z). In light of this, why look further, since it seems
This leads us to a criterion for choosing f,

we have a universal approximator? We often do not have very large sam-

e expectation is approximated by averaging over sample data;

. _ 2 ples. If the linear or some more structured model is appropriate, then we

EPE(f) = E(I - f(X)) (2.9) can usually get a more stable estimate than k-nearest neighbors, although
— / [y — f(x)]2 Pr(dz, dy), (2.10) such knowledge has to be learned from the data as well. There are other

problems though, sometimes disastrous. In Section 2.5 we see that as the

dimension p gets large, so does the metric size of the k-nearest neighbor-

hood. So settling for nearest neighborhood as a surrogate for conditioning

write EPE as will fail us miserably. The convergence above still holds, but the rate of
EPE(f) = Ex EY|X ([Y - f(X )]2|X ) (2.11) convergence decreases as the dimension increases.

How does linear regression fit into this framework? The simplest explana-

tion is that one assumes that the regression function f(z) is approximately

the expected (squared) prediction error . By conditioning! on X, we can

and we see that it suffices to minimize EPE pointwise:

. . 2y — linear in its arguments:
flz) = argmin Ey|x ([Y c]*|X :c) . (2.12) f(z) ~ 2B, (2.15)
The solution is This is a model-based approach—we specify a model for the regression func-
f(x) =E(Y|X =z), (2.13) tion. Plugging this linear model for f(z) into EPE (2.9) and differentiating

o ) we can solve for 3 theoretically:
the conditional expectation, also known as the regression function. Thus

the best prediction of Y at any point X = z is the conditional mean, when B = [E(XXT)]'E(XY). (2.16)
best is measured by average squared error.

The nearest-neighbor methods attempt to directly implement this recipe
using the training data. At each point z, we might ask for the average of all

Note we have not conditioned on X; rather we have used our knowledge
of the functional relationship to pool over values of X. The least squares
solution (2.6) amounts to replacing the expectation in (2.16) by averages
over the training data.

! Conditioning here amounts to factoring the joint density Pr(X,Y) = Pr(Y|X)Pr(X)  So both k-nearest neighbors and least squares end up approximating
where Pr(Y|X) = Pr(Y, X)/Pr(X), and splitting up the bivariate integral accordingly. conditional expectations by averages. But they differ dramatically in terms
of model assumptions:



So both k-nearest neighbors and least squares end up approximating
conditional expectations by averages. But they differ dramatically in terms
of model assumptions:

e Least squares assumes f(x) is well approximated by a globally linear
function.

e k-nearest neighbors assumes f(x) is well approximated by a locally
constant function.

Although the latter seems more palatable, we have already seen that we
may pay a price for this flexibility.

Many of the more modern techniques described in this book are model
based, although far more flexible than the rigid linear model. For example,
additive models assume that

FX) = Y 55(X)) (217)

This retains the additivity of the linear model, but each coordinate function
f; is arbitrary. It turns out that the optimal estimate for the additive model
uses techniques such as k-nearest neighbors to approximate univariate con-
ditional expectations simultaneously for each of the coordinate functions.
Thus the problems of estimating a conditional expectation in high dimen-
sions are swept away in this case by imposing some (often unrealistic) model
assumptions, in this case additivity.



Here the data (z;, y;)™ ; is supposed random, so that there is an unknown prob-
ability measure p on the product space X x Y from which the data is drawn.

This measure p defines a function

fo: X—=Y (8)

satisfying f,(z) = [ ydp,, where p, is the conditional measure on z x Y.

From this construction f, can be said to be the true input-output function re-
flecting the environment which produces the data. Thus a measurement of the
error of f is

/ (f — f»)’dpx 9)
X

where px is the measure on X induced by p (sometimes called the marginal
measure).

The goal of learning theory might be said to “find” f minimizing this error.



Starting from the data (z;,;)™, = z one may minimize = >~ (f(z;) — y;)?

over f € H to obtain a unique hypothesis f, : X — Y. This f, is called the
empirical optimum and we may focus on the problem of estimating

/ (f2 — f»)?dpx (11)
X

It is useful towards this end to break the problem into steps by defining a “true
optimum” f; relative to H, by taking the minimum over X of [, (f — f,)?.
Thus we may exhibit

/(fz_fp)2:S(zaH)+/(fH_fp)QZS(z’H)+A(H) (12)
X X

Sample Error Approximation Error



Error

Identify Sample and Approximation Error in this setting...
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From Hastie, Tibshirani, Friedman Book

(training) data in wheat/blue

Problem: predict y=f(x,,x,)>0

Possibilities for f(x;,X,)=0 shown in black




Related Reading

Messy code for the 2D loss example in Matlab (link).

Kearns and Vazirani Introduction to Computational Learning Theory pages 1-16
(link)

Maxim Raginksy’s introduction notes for statistical machine learning:
http://maxim.ece.illinois.edu/teaching/fall14/notes/intro.pdf

Poggio & Smale “The mathematics of learning: dealing with data”, Notices of the American
Mathematical Society, vol. 50, no. 5, pp. 537-544, 2003.

http://cbcl.mit.edu/projects/cbcl/publications/ps/notices-ams2003refs.pdf

Hastie, Tibshirani, Friedman Elements of Statistical Learning (the course textbook)
Chapters 1 and 2
http://statweb.stanford.edu/~tibs/ElemStatlLearn/




