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Some Deep Networks for Recognition
Prof. Alex Berg
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Structure of deep network outputs
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Figure 1. Deep networks with piecewise linear activations subdi-
vide input space into convex polytopes. We take a three hidden
layer ReLU network, with input 2 € R?, and four units in each
layer. The left pane shows activations for the first layer only. As
the input is in R?, neurons in the first hidden layer have an associ-
ated line in R?, depicting their activation boundary. The left pane
thus has four such lines. For the second hidden layer each neuron
again has a line in input space corresponding to on/off, but this
line is different for each region described by the first layer activa-
tion pattern. So in the centre pane, which shows activation bound-
ary lines corresponding to second hidden layer neurons in green
(and first hidden layer in black), we can see the green lines ‘bend’
at the boundaries. (The reason for this bending becomes appar-
ent through the proof of Theorem 2.) Finally, the right pane adds
the on/off boundaries for neurons in the third hidden layer, in pur-
ple. These lines can bend at both black and green boundaries, as
the image shows. This final set of convex polytopes corresponds
to all activation patterns for this network (with its current set of
weights) over the unit square, with each polytope representing a
different linear function.

On the Expressive Power of Deep Neural Networks Maithra Raghu
Ben Poole Jon Kleinbere Surva Ganouli Jascha Sohl Dickstein (ICMI. 2017)
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How does this compare to:

simple data circle data spiral data

L]
drawing neurons 0 and 1 of layer with index 1 (fc)

random data fe(2) relu(2) fe(2) relu(2)

https://cs.stanford.edu/p

eople/karpathy/convnetj

s/demo/classify2d.html
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896—64,896—43,264—
4096—4096—1000.

ImageNet Classification with Deep

Convolutional Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton (NIPS 2012)
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
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What is the loss function?
Where are the non-linearities?e
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Going Deeper with Convolutions
Christian Szegedy:, Wei Liu, .... Many others (CVPR 2015)
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(a) Inception module, naive version
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(b) Inception module with dimensionality reduction




Going deeper!
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Going Deeper with Convolutions
Christian Szegedy:, Wei Liu, .... Many others (CVPR 2015)



VGG --- also deep (and cheap

Table 1: ConvNet configurations (shown in columns). The depth of the configurations increases
from the left (A) to the right (E), as more layers are added (the added layers are shown in bold). The
convolutional layer parameters are denoted as “conv(receptive field size)-(number of channels)”.
The ReLU activation function is not shown for brevity.

ConvNet Configuration
A A-LRN B C D E
11 weight | 11 weight | 13 weight | 16 weight 16 weight 19 weight
layers layers layers layers layers layers
input (224 x 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Table 2: Number of parameters (in millions).
Network A A-LRN B C D E
Number of parameters 133 133 | 134 | 138 | 144

VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE
RECOGNITION Karen Simonyan * & Andrew Zisserman + (ICLR 2015)



Cleaning things up: Resnet
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Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain [(aocmzs | [ 2acom 258
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Deep Residual Learning for Image Recognition e
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(CVPR 2016)




