
Computer Vision
CS 776 Fall 2018

Some Deep Networks for Recognition
Prof. Alex Berg

Structure of deep network outputsOn the Expressive Power of Deep Neural Networks

Figure 1. Deep networks with piecewise linear activations subdi-
vide input space into convex polytopes. We take a three hidden
layer ReLU network, with input x 2 R2, and four units in each
layer. The left pane shows activations for the first layer only. As
the input is in R2, neurons in the first hidden layer have an associ-
ated line in R2, depicting their activation boundary. The left pane
thus has four such lines. For the second hidden layer each neuron
again has a line in input space corresponding to on/off, but this
line is different for each region described by the first layer activa-
tion pattern. So in the centre pane, which shows activation bound-
ary lines corresponding to second hidden layer neurons in green
(and first hidden layer in black), we can see the green lines ‘bend’
at the boundaries. (The reason for this bending becomes appar-
ent through the proof of Theorem 2.) Finally, the right pane adds
the on/off boundaries for neurons in the third hidden layer, in pur-
ple. These lines can bend at both black and green boundaries, as
the image shows. This final set of convex polytopes corresponds
to all activation patterns for this network (with its current set of
weights) over the unit square, with each polytope representing a
different linear function.

Theorem 2. Regions in Input Space Given the correspond-

ing function of a neural network F
A

(Rm

;W) with ReLU

or hard tanh activations, the input space is partitioned into

convex polytopes, with F
A

(Rm

;W) corresponding to a dif-

ferent linear function on each region.

This result is of independent interest for optimization – a
linear function over a convex polytope results in a well be-
haved loss function and an easy optimization problem. Un-
derstanding the density of these regions during the training
process would likely shed light on properties of the loss
surface, and improved optimization methods. A picture of
a network’s regions is shown in Figure 1.

2.1.1. EMPIRICALLY COUNTING TRANSITIONS

We empirically tested the growth of the number of acti-
vations and transitions as we varied x along x(t) to under-
stand their behavior. We found that for bounded non linear-
ities, especially tanh and hard-tanh, not only do we observe
exponential growth with depth (as hinted at by the upper
bound) but that the scale of parameter initialization also af-
fects the observations (Figure 2). We also experimented
with sweeping the weights W of a layer through a trajec-
tory W (t), and counting the different labellings output by
the network. This ‘dichotomies’ measure is discussed fur-
ther in the Appendix, and also exhibits the same growth
properties, Figure 14.

Figure 2. The number of transitions seen for fully connected net-
works of different widths, depths and initialization scales, with
a circular trajectory between MNIST datapoints. The number of
transitions grows exponentially with the depth of the architecture,
as seen in (left). The same rate of growth is not seen with increas-
ing architecture width, plotted in (right). There is a surprising
dependence on the scale of initialization, explained in 2.2.

Figure 3. Picture showing a trajectory increasing with the depth
of a network. We start off with a circular trajectory (left most
pane), and feed it through a fully connected tanh network with
width 100. Pane second from left shows the image of the circular
trajectory (projected down to two dimensions) after being trans-
formed by the first hidden layer. Subsequent panes show pro-
jections of the latent image of the circular trajectory after being
transformed by more hidden layers. The final pane shows the the
trajectory after being transformed by all the hidden layers.

2.2. Trajectory Length

In fact, there turns out to be a reason for the exponential
growth with depth, and the sensitivity to initialization scale.
Returning to our definition of trajectory, we can define an
immediately related quantity, trajectory length

Definition: Given a trajectory, x(t), we define its length,
l(x(t)), to be the standard arc length:

l(x(t)) =

Z

t

����

����
dx(t)

dt

����

���� dt

Intuitively, the arc length breaks x(t) up into infinitesimal
intervals and sums together the Euclidean length of these
intervals.

If we let A(n,k) denote, as before, fully connected networks
with n hidden layers each of width k, and initializing with
weights ⇠ N (0,�2

w

/k) (accounting for input scaling as
typical), and biases ⇠ N (0,�2

b

), we find that:

Theorem 3. Bound on Growth of Trajectory Length Let

F
A

(x0,W) be a ReLU or hard tanh random neural network

and x(t) a one dimensional trajectory with x(t+ �) having

a non trival perpendicular component to x(t) for all t, �

Structure of deep network outputsOn the Expressive Power of Deep Neural Networks

Figure 1. Deep networks with piecewise linear activations subdi-
vide input space into convex polytopes. We take a three hidden
layer ReLU network, with input x 2 R2, and four units in each
layer. The left pane shows activations for the first layer only. As
the input is in R2, neurons in the first hidden layer have an associ-
ated line in R2, depicting their activation boundary. The left pane
thus has four such lines. For the second hidden layer each neuron
again has a line in input space corresponding to on/off, but this
line is different for each region described by the first layer activa-
tion pattern. So in the centre pane, which shows activation bound-
ary lines corresponding to second hidden layer neurons in green
(and first hidden layer in black), we can see the green lines ‘bend’
at the boundaries. (The reason for this bending becomes appar-
ent through the proof of Theorem 2.) Finally, the right pane adds
the on/off boundaries for neurons in the third hidden layer, in pur-
ple. These lines can bend at both black and green boundaries, as
the image shows. This final set of convex polytopes corresponds
to all activation patterns for this network (with its current set of
weights) over the unit square, with each polytope representing a
different linear function.

Theorem 2. Regions in Input Space Given the correspond-

ing function of a neural network F
A

(Rm

;W) with ReLU

or hard tanh activations, the input space is partitioned into

convex polytopes, with F
A

(Rm

;W) corresponding to a dif-

ferent linear function on each region.

This result is of independent interest for optimization – a
linear function over a convex polytope results in a well be-
haved loss function and an easy optimization problem. Un-
derstanding the density of these regions during the training
process would likely shed light on properties of the loss
surface, and improved optimization methods. A picture of
a network’s regions is shown in Figure 1.

2.1.1. EMPIRICALLY COUNTING TRANSITIONS

We empirically tested the growth of the number of acti-
vations and transitions as we varied x along x(t) to under-
stand their behavior. We found that for bounded non linear-
ities, especially tanh and hard-tanh, not only do we observe
exponential growth with depth (as hinted at by the upper
bound) but that the scale of parameter initialization also af-
fects the observations (Figure 2). We also experimented
with sweeping the weights W of a layer through a trajec-
tory W (t), and counting the different labellings output by
the network. This ‘dichotomies’ measure is discussed fur-
ther in the Appendix, and also exhibits the same growth
properties, Figure 14.

Figure 2. The number of transitions seen for fully connected net-
works of different widths, depths and initialization scales, with
a circular trajectory between MNIST datapoints. The number of
transitions grows exponentially with the depth of the architecture,
as seen in (left). The same rate of growth is not seen with increas-
ing architecture width, plotted in (right). There is a surprising
dependence on the scale of initialization, explained in 2.2.

Figure 3. Picture showing a trajectory increasing with the depth
of a network. We start off with a circular trajectory (left most
pane), and feed it through a fully connected tanh network with
width 100. Pane second from left shows the image of the circular
trajectory (projected down to two dimensions) after being trans-
formed by the first hidden layer. Subsequent panes show pro-
jections of the latent image of the circular trajectory after being
transformed by more hidden layers. The final pane shows the the
trajectory after being transformed by all the hidden layers.

2.2. Trajectory Length

In fact, there turns out to be a reason for the exponential
growth with depth, and the sensitivity to initialization scale.
Returning to our definition of trajectory, we can define an
immediately related quantity, trajectory length

Definition: Given a trajectory, x(t), we define its length,
l(x(t)), to be the standard arc length:

l(x(t)) =

Z

t

����

����
dx(t)

dt

����

���� dt

Intuitively, the arc length breaks x(t) up into infinitesimal
intervals and sums together the Euclidean length of these
intervals.

If we let A(n,k) denote, as before, fully connected networks
with n hidden layers each of width k, and initializing with
weights ⇠ N (0,�2

w

/k) (accounting for input scaling as
typical), and biases ⇠ N (0,�2

b

), we find that:

Theorem 3. Bound on Growth of Trajectory Length Let

F
A

(x0,W) be a ReLU or hard tanh random neural network

and x(t) a one dimensional trajectory with x(t+ �) having

a non trival perpendicular component to x(t) for all t, �

On the Expressive Power of Deep Neural Networks Maithra Raghu
1 2 Ben Poole 3 Jon Kleinberg 1 Surya Ganguli 3 Jascha Sohl Dickstein (ICML 2017) 2

Structure of deep network outputsOn the Expressive Power of Deep Neural Networks

Figure 1. Deep networks with piecewise linear activations subdi-
vide input space into convex polytopes. We take a three hidden
layer ReLU network, with input x 2 R2, and four units in each
layer. The left pane shows activations for the first layer only. As
the input is in R2, neurons in the first hidden layer have an associ-
ated line in R2, depicting their activation boundary. The left pane
thus has four such lines. For the second hidden layer each neuron
again has a line in input space corresponding to on/off, but this
line is different for each region described by the first layer activa-
tion pattern. So in the centre pane, which shows activation bound-
ary lines corresponding to second hidden layer neurons in green
(and first hidden layer in black), we can see the green lines ‘bend’
at the boundaries. (The reason for this bending becomes appar-
ent through the proof of Theorem 2.) Finally, the right pane adds
the on/off boundaries for neurons in the third hidden layer, in pur-
ple. These lines can bend at both black and green boundaries, as
the image shows. This final set of convex polytopes corresponds
to all activation patterns for this network (with its current set of
weights) over the unit square, with each polytope representing a
different linear function.

Theorem 2. Regions in Input Space Given the correspond-

ing function of a neural network F
A

(Rm

;W) with ReLU

or hard tanh activations, the input space is partitioned into

convex polytopes, with F
A

(Rm

;W) corresponding to a dif-

ferent linear function on each region.

This result is of independent interest for optimization – a
linear function over a convex polytope results in a well be-
haved loss function and an easy optimization problem. Un-
derstanding the density of these regions during the training
process would likely shed light on properties of the loss
surface, and improved optimization methods. A picture of
a network’s regions is shown in Figure 1.

2.1.1. EMPIRICALLY COUNTING TRANSITIONS

We empirically tested the growth of the number of acti-
vations and transitions as we varied x along x(t) to under-
stand their behavior. We found that for bounded non linear-
ities, especially tanh and hard-tanh, not only do we observe
exponential growth with depth (as hinted at by the upper
bound) but that the scale of parameter initialization also af-
fects the observations (Figure 2). We also experimented
with sweeping the weights W of a layer through a trajec-
tory W (t), and counting the different labellings output by
the network. This ‘dichotomies’ measure is discussed fur-
ther in the Appendix, and also exhibits the same growth
properties, Figure 14.

Figure 2. The number of transitions seen for fully connected net-
works of different widths, depths and initialization scales, with
a circular trajectory between MNIST datapoints. The number of
transitions grows exponentially with the depth of the architecture,
as seen in (left). The same rate of growth is not seen with increas-
ing architecture width, plotted in (right). There is a surprising
dependence on the scale of initialization, explained in 2.2.

Figure 3. Picture showing a trajectory increasing with the depth
of a network. We start off with a circular trajectory (left most
pane), and feed it through a fully connected tanh network with
width 100. Pane second from left shows the image of the circular
trajectory (projected down to two dimensions) after being trans-
formed by the first hidden layer. Subsequent panes show pro-
jections of the latent image of the circular trajectory after being
transformed by more hidden layers. The final pane shows the the
trajectory after being transformed by all the hidden layers.

2.2. Trajectory Length

In fact, there turns out to be a reason for the exponential
growth with depth, and the sensitivity to initialization scale.
Returning to our definition of trajectory, we can define an
immediately related quantity, trajectory length

Definition: Given a trajectory, x(t), we define its length,
l(x(t)), to be the standard arc length:

l(x(t)) =

Z

t

����

����
dx(t)

dt

����

���� dt

Intuitively, the arc length breaks x(t) up into infinitesimal
intervals and sums together the Euclidean length of these
intervals.

If we let A(n,k) denote, as before, fully connected networks
with n hidden layers each of width k, and initializing with
weights ⇠ N (0,�2

w

/k) (accounting for input scaling as
typical), and biases ⇠ N (0,�2

b

), we find that:

Theorem 3. Bound on Growth of Trajectory Length Let

F
A

(x0,W) be a ReLU or hard tanh random neural network

and x(t) a one dimensional trajectory with x(t+ �) having

a non trival perpendicular component to x(t) for all t, �

On the Expressive Power of Deep Neural Networks Maithra Raghu
1 2 Ben Poole 3 Jon Kleinberg 1 Surya Ganguli 3 Jascha Sohl Dickstein (ICML 2017) 2

Structure of deep network outputsOn the Expressive Power of Deep Neural Networks

Figure 1. Deep networks with piecewise linear activations subdi-
vide input space into convex polytopes. We take a three hidden
layer ReLU network, with input x 2 R2, and four units in each
layer. The left pane shows activations for the first layer only. As
the input is in R2, neurons in the first hidden layer have an associ-
ated line in R2, depicting their activation boundary. The left pane
thus has four such lines. For the second hidden layer each neuron
again has a line in input space corresponding to on/off, but this
line is different for each region described by the first layer activa-
tion pattern. So in the centre pane, which shows activation bound-
ary lines corresponding to second hidden layer neurons in green
(and first hidden layer in black), we can see the green lines ‘bend’
at the boundaries. (The reason for this bending becomes appar-
ent through the proof of Theorem 2.) Finally, the right pane adds
the on/off boundaries for neurons in the third hidden layer, in pur-
ple. These lines can bend at both black and green boundaries, as
the image shows. This final set of convex polytopes corresponds
to all activation patterns for this network (with its current set of
weights) over the unit square, with each polytope representing a
different linear function.

Theorem 2. Regions in Input Space Given the correspond-

ing function of a neural network F
A

(Rm

;W) with ReLU

or hard tanh activations, the input space is partitioned into

convex polytopes, with F
A

(Rm

;W) corresponding to a dif-

ferent linear function on each region.

This result is of independent interest for optimization – a
linear function over a convex polytope results in a well be-
haved loss function and an easy optimization problem. Un-
derstanding the density of these regions during the training
process would likely shed light on properties of the loss
surface, and improved optimization methods. A picture of
a network’s regions is shown in Figure 1.

2.1.1. EMPIRICALLY COUNTING TRANSITIONS

We empirically tested the growth of the number of acti-
vations and transitions as we varied x along x(t) to under-
stand their behavior. We found that for bounded non linear-
ities, especially tanh and hard-tanh, not only do we observe
exponential growth with depth (as hinted at by the upper
bound) but that the scale of parameter initialization also af-
fects the observations (Figure 2). We also experimented
with sweeping the weights W of a layer through a trajec-
tory W (t), and counting the different labellings output by
the network. This ‘dichotomies’ measure is discussed fur-
ther in the Appendix, and also exhibits the same growth
properties, Figure 14.

Figure 2. The number of transitions seen for fully connected net-
works of different widths, depths and initialization scales, with
a circular trajectory between MNIST datapoints. The number of
transitions grows exponentially with the depth of the architecture,
as seen in (left). The same rate of growth is not seen with increas-
ing architecture width, plotted in (right). There is a surprising
dependence on the scale of initialization, explained in 2.2.

Figure 3. Picture showing a trajectory increasing with the depth
of a network. We start off with a circular trajectory (left most
pane), and feed it through a fully connected tanh network with
width 100. Pane second from left shows the image of the circular
trajectory (projected down to two dimensions) after being trans-
formed by the first hidden layer. Subsequent panes show pro-
jections of the latent image of the circular trajectory after being
transformed by more hidden layers. The final pane shows the the
trajectory after being transformed by all the hidden layers.

2.2. Trajectory Length

In fact, there turns out to be a reason for the exponential
growth with depth, and the sensitivity to initialization scale.
Returning to our definition of trajectory, we can define an
immediately related quantity, trajectory length

Definition: Given a trajectory, x(t), we define its length,
l(x(t)), to be the standard arc length:

l(x(t)) =

Z

t

����

����
dx(t)

dt

����

���� dt

Intuitively, the arc length breaks x(t) up into infinitesimal
intervals and sums together the Euclidean length of these
intervals.

If we let A(n,k) denote, as before, fully connected networks
with n hidden layers each of width k, and initializing with
weights ⇠ N (0,�2

w

/k) (accounting for input scaling as
typical), and biases ⇠ N (0,�2

b

), we find that:

Theorem 3. Bound on Growth of Trajectory Length Let

F
A

(x0,W) be a ReLU or hard tanh random neural network

and x(t) a one dimensional trajectory with x(t+ �) having

a non trival perpendicular component to x(t) for all t, �

On the Expressive Power of Deep Neural Networks Maithra Raghu
1 2 Ben Poole 3 Jon Kleinberg 1 Surya Ganguli 3 Jascha Sohl Dickstein (ICML 2017) 2

https://cs.stanford.edu/p
eople/karpathy/convnetj
s/demo/classify2d.html

How does this compare to:

Structure of deep networks

Structure of deep networks

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

ImageNet Classification with Deep
Convolutional Neural Networks
Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton (NIPS 2012)

Structure of deep networks

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

What is the loss function?
Where are the non-linearities?

Structure of deep networks

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

•
A

linearlayerw
ith

softm
ax

loss
as

the
classifier(pre-

dicting
the

sam
e

1000
classesasthe

m
ain

classifier,but
rem

oved
atinference

tim
e).

A
schem

atic
view

ofthe
resulting

netw
ork

is
depicted

in
Figure

3.

6.Training
M

ethodology

G
oogLeN

et
netw

orks
w

ere
trained

using
the

D
istB

e-
lief

[4]
distributed

m
achine

learning
system

using
m

od-
est

am
ount

of
m

odel
and

data-parallelism
.

A
lthough

w
e

used
a

C
PU

based
im

plem
entation

only,a
rough

estim
ate

suggests
that

the
G

oogLeN
et

netw
ork

could
be

trained
to

convergence
using

few
high-end

G
PU

s
w

ithin
a

w
eek,the

m
ain

lim
itation

being
the

m
em

ory
usage.O

urtraining
used

asynchronous
stochastic

gradientdescentw
ith

0.9
m

om
en-

tum
[17],fixed

learning
rate

schedule
(decreasing

the
learn-

ing
rate

by
4%

every
8

epochs).Polyak
averaging

[13]w
as

used
to

create
the

finalm
odelused

atinference
tim

e.
Im

age
sam

pling
m

ethods
have

changed
substantially

over
the

m
onths

leading
to

the
com

petition,
and

already
converged

m
odelsw

ere
trained

on
w

ith
otheroptions,som

e-
tim

es
in

conjunction
w

ith
changed

hyperparam
eters,

such
as

dropout
and

the
learning

rate.
Therefore,

it
is

hard
to

give
a

definitive
guidance

to
the

m
osteffective

single
w

ay
to

train
these

netw
orks.To

com
plicate

m
attersfurther,som

e
ofthe

m
odelsw

ere
m

ainly
trained

on
sm

allerrelative
crops,

others
on

larger
ones,inspired

by
[8].

Still,one
prescrip-

tion
thatw

as
verified

to
w

ork
very

w
ellafter

the
com

peti-
tion,includes

sam
pling

ofvarious
sized

patches
ofthe

im
-

age
w

hose
size

is
distributed

evenly
betw

een
8%

and
100%

ofthe
im

age
area

w
ith

aspectratio
constrained

to
the

inter-
val

[
34 ,

43].
A

lso,w
e

found
thatthe

photom
etric

distortions
ofA

ndrew
H

ow
ard

[8]w
ere

usefulto
com

batoverfitting
to

the
im

aging
conditions

oftraining
data.

7.
IL

SV
R

C
2014

C
lassification

C
hallenge

Setup
and

R
esults

The
ILSV

R
C

2014
classification

challenge
involves

the
task

ofclassifying
the

im
age

into
one

of1000
leaf-node

cat-
egories

in
the

Im
agenethierarchy.There

are
about1.2

m
il-

lion
im

ages
fortraining,50,000

forvalidation
and

100,000
im

ages
for

testing.
Each

im
age

is
associated

w
ith

one
ground

truth
category,and

perform
ance

is
m

easured
based

on
the

highest
scoring

classifier
predictions.

Tw
o

num
-

bers
are

usually
reported:

the
top-1

accuracy
rate,

w
hich

com
pares

the
ground

truth
againstthe

firstpredicted
class,

and
the

top-5
error

rate,w
hich

com
pares

the
ground

truth
against

the
first

5
predicted

classes:
an

im
age

is
deem

ed
correctly

classified
if

the
ground

truth
is

am
ong

the
top-5,

regardless
ofits

rank
in

them
.The

challenge
uses

the
top-5

errorrate
forranking

purposes.

input

Conv
7x7+

2(S)

M
axPool

3x3+
2(S)

LocalRespNorm

Conv
1x1+

1(V)

Conv
3x3+

1(S)

LocalRespNorm

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

AveragePool
5x5+

3(V)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

AveragePool
5x5+

3(V)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

AveragePool
7x7+

1(V)

FC

Conv
1x1+

1(S)

FC FC

Softm
axActivation

softm
ax0

Conv
1x1+

1(S)

FC FC

Softm
axActivation

softm
ax1

Softm
axActivation

softm
ax2

Figure
3:G

oogLeN
etnetw

ork
w

ith
allthe

bells
and

w
histles.

1x1 convolutions 3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling

(a) Inception module, naı̈ve version

1x1 convolutions

3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling1x1 convolutions 1x1 convolutions

1x1 convolutions

(b) Inception module with dimensionality reduction

Figure 2: Inception module

ber of filters in the previous stage. The merging of output
of the pooling layer with outputs of the convolutional lay-
ers would lead to an inevitable increase in the number of
outputs from stage to stage. While this architecture might
cover the optimal sparse structure, it would do it very inef-
ficiently, leading to a computational blow up within a few
stages.

This leads to the second idea of the Inception architec-
ture: judiciously reducing dimension wherever the compu-
tational requirements would increase too much otherwise.
This is based on the success of embeddings: even low di-
mensional embeddings might contain a lot of information
about a relatively large image patch. However, embed-
dings represent information in a dense, compressed form
and compressed information is harder to process. The rep-
resentation should be kept sparse at most places (as required
by the conditions of [2]) and compress the signals only
whenever they have to be aggregated en masse. That is,
1⇥1 convolutions are used to compute reductions before
the expensive 3⇥3 and 5⇥5 convolutions. Besides being
used as reductions, they also include the use of rectified lin-
ear activation making them dual-purpose. The final result is
depicted in Figure 2(b).

In general, an Inception network is a network consist-
ing of modules of the above type stacked upon each other,
with occasional max-pooling layers with stride 2 to halve
the resolution of the grid. For technical reasons (memory

efficiency during training), it seemed beneficial to start us-
ing Inception modules only at higher layers while keeping
the lower layers in traditional convolutional fashion. This is
not strictly necessary, simply reflecting some infrastructural
inefficiencies in our current implementation.

A useful aspect of this architecture is that it allows for
increasing the number of units at each stage significantly
without an uncontrolled blow-up in computational com-
plexity at later stages. This is achieved by the ubiquitous
use of dimensionality reduction prior to expensive convolu-
tions with larger patch sizes. Furthermore, the design fol-
lows the practical intuition that visual information should
be processed at various scales and then aggregated so that
the next stage can abstract features from the different scales
simultaneously.

The improved use of computational resources allows for
increasing both the width of each stage as well as the num-
ber of stages without getting into computational difficulties.
One can utilize the Inception architecture to create slightly
inferior, but computationally cheaper versions of it. We
have found that all the available knobs and levers allow for
a controlled balancing of computational resources resulting
in networks that are 3� 10⇥ faster than similarly perform-
ing networks with non-Inception architecture, however this
requires careful manual design at this point.

5. GoogLeNet
By the“GoogLeNet” name we refer to the particular in-

carnation of the Inception architecture used in our submis-
sion for the ILSVRC 2014 competition. We also used one
deeper and wider Inception network with slightly superior
quality, but adding it to the ensemble seemed to improve the
results only marginally. We omit the details of that network,
as empirical evidence suggests that the influence of the ex-
act architectural parameters is relatively minor. Table 1 il-
lustrates the most common instance of Inception used in the
competition. This network (trained with different image-
patch sampling methods) was used for 6 out of the 7 models
in our ensemble.

All the convolutions, including those inside the Incep-
tion modules, use rectified linear activation. The size of the
receptive field in our network is 224⇥224 in the RGB color
space with zero mean. “#3⇥3 reduce” and “#5⇥5 reduce”
stands for the number of 1⇥1 filters in the reduction layer
used before the 3⇥3 and 5⇥5 convolutions. One can see
the number of 1⇥1 filters in the projection layer after the
built-in max-pooling in the pool proj column. All these re-
duction/projection layers use rectified linear activation as
well.

The network was designed with computational efficiency
and practicality in mind, so that inference can be run on in-
dividual devices including even those with limited compu-
tational resources, especially with low-memory footprint.

Going Deeper with Convolutions
Christian Szegedy1, Wei Liu, …. Many others (CVPR 2015)

Going deeper!
•

A
linearlayerw

ith
softm

ax
loss

as
the

classifier(pre-
dicting

the
sam

e
1000

classesasthe
m

ain
classifier,but

rem
oved

atinference
tim

e).

A
schem

atic
view

ofthe
resulting

netw
ork

is
depicted

in
Figure

3.

6.Training
M

ethodology

G
oogLeN

et
netw

orks
w

ere
trained

using
the

D
istB

e-
lief

[4]
distributed

m
achine

learning
system

using
m

od-
est

am
ount

of
m

odel
and

data-parallelism
.

A
lthough

w
e

used
a

C
PU

based
im

plem
entation

only,a
rough

estim
ate

suggests
that

the
G

oogLeN
et

netw
ork

could
be

trained
to

convergence
using

few
high-end

G
PU

s
w

ithin
a

w
eek,the

m
ain

lim
itation

being
the

m
em

ory
usage.O

urtraining
used

asynchronous
stochastic

gradientdescentw
ith

0.9
m

om
en-

tum
[17],fixed

learning
rate

schedule
(decreasing

the
learn-

ing
rate

by
4%

every
8

epochs).Polyak
averaging

[13]w
as

used
to

create
the

finalm
odelused

atinference
tim

e.
Im

age
sam

pling
m

ethods
have

changed
substantially

over
the

m
onths

leading
to

the
com

petition,
and

already
converged

m
odelsw

ere
trained

on
w

ith
otheroptions,som

e-
tim

es
in

conjunction
w

ith
changed

hyperparam
eters,

such
as

dropout
and

the
learning

rate.
Therefore,

it
is

hard
to

give
a

definitive
guidance

to
the

m
osteffective

single
w

ay
to

train
these

netw
orks.To

com
plicate

m
attersfurther,som

e
ofthe

m
odelsw

ere
m

ainly
trained

on
sm

allerrelative
crops,

others
on

larger
ones,inspired

by
[8].

Still,one
prescrip-

tion
thatw

as
verified

to
w

ork
very

w
ellafter

the
com

peti-
tion,includes

sam
pling

ofvarious
sized

patches
ofthe

im
-

age
w

hose
size

is
distributed

evenly
betw

een
8%

and
100%

ofthe
im

age
area

w
ith

aspectratio
constrained

to
the

inter-
val

[
34 ,

43].
A

lso,w
e

found
thatthe

photom
etric

distortions
ofA

ndrew
H

ow
ard

[8]w
ere

usefulto
com

batoverfitting
to

the
im

aging
conditions

oftraining
data.

7.
IL

SV
R

C
2014

C
lassification

C
hallenge

Setup
and

R
esults

The
ILSV

R
C

2014
classification

challenge
involves

the
task

ofclassifying
the

im
age

into
one

of1000
leaf-node

cat-
egories

in
the

Im
agenethierarchy.There

are
about1.2

m
il-

lion
im

ages
fortraining,50,000

forvalidation
and

100,000
im

ages
for

testing.
Each

im
age

is
associated

w
ith

one
ground

truth
category,and

perform
ance

is
m

easured
based

on
the

highest
scoring

classifier
predictions.

Tw
o

num
-

bers
are

usually
reported:

the
top-1

accuracy
rate,

w
hich

com
pares

the
ground

truth
againstthe

firstpredicted
class,

and
the

top-5
error

rate,w
hich

com
pares

the
ground

truth
against

the
first

5
predicted

classes:
an

im
age

is
deem

ed
correctly

classified
if

the
ground

truth
is

am
ong

the
top-5,

regardless
ofits

rank
in

them
.The

challenge
uses

the
top-5

errorrate
forranking

purposes.

input

Conv
7x7+

2(S)

M
axPool

3x3+
2(S)

LocalRespNorm

Conv
1x1+

1(V)

Conv
3x3+

1(S)

LocalRespNorm

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

AveragePool
5x5+

3(V)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

AveragePool
5x5+

3(V)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

M
axPool

3x3+
2(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)

Conv
1x1+

1(S)
Conv

1x1+
1(S)

M
axPool

3x3+
1(S)

D
epthConcat

Conv
3x3+

1(S)
Conv

5x5+
1(S)

Conv
1x1+

1(S)

AveragePool
7x7+

1(V)

FC

Conv
1x1+

1(S)

FC FC

Softm
axActivation

softm
ax0

Conv
1x1+

1(S)

FC FC

Softm
axActivation

softm
ax1

Softm
axActivation

softm
ax2

Figure
3:G

oogLeN
etnetw

ork
w

ith
allthe

bells
and

w
histles.

Going Deeper with Convolutions
Christian Szegedy1, Wei Liu, …. Many others (CVPR 2015)

VGG --- also deep (and cheap)

VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE
RECOGNITION Karen Simonyan ∗ & Andrew Zisserman + (ICLR 2015)

Published as a conference paper at ICLR 2015

Table 1: ConvNet configurations (shown in columns). The depth of the configurations increases
from the left (A) to the right (E), as more layers are added (the added layers are shown in bold). The
convolutional layer parameters are denoted as “conv⟨receptive field size⟩-⟨number of channels⟩”.
The ReLU activation function is not shown for brevity.

ConvNet Configuration
A A-LRN B C D E

11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers

input (224× 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64

LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool

conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128 conv3-128

maxpool
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv1-256 conv3-256 conv3-256
conv3-256

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max

Table 2: Number of parameters (in millions).
Network A,A-LRN B C D E
Number of parameters 133 133 134 138 144

such layers have a 7 × 7 effective receptive field. So what have we gained by using, for instance, a
stack of three 3×3 conv. layers instead of a single 7×7 layer? First, we incorporate three non-linear
rectification layers instead of a single one, which makes the decision function more discriminative.
Second, we decrease the number of parameters: assuming that both the input and the output of a
three-layer 3× 3 convolution stack has C channels, the stack is parametrised by 3

(

32C2
)

= 27C2

weights; at the same time, a single 7 × 7 conv. layer would require 72C2 = 49C2 parameters, i.e.
81% more. This can be seen as imposing a regularisation on the 7× 7 conv. filters, forcing them to
have a decomposition through the 3× 3 filters (with non-linearity injected in between).

The incorporation of 1 × 1 conv. layers (configuration C, Table 1) is a way to increase the non-
linearity of the decision function without affecting the receptive fields of the conv. layers. Even
though in our case the 1× 1 convolution is essentially a linear projection onto the space of the same
dimensionality (the number of input and output channels is the same), an additional non-linearity is
introduced by the rectification function. It should be noted that 1×1 conv. layers have recently been
utilised in the “Network in Network” architecture of Lin et al. (2014).

Small-size convolution filters have been previously used by Ciresan et al. (2011), but their nets
are significantly less deep than ours, and they did not evaluate on the large-scale ILSVRC
dataset. Goodfellow et al. (2014) applied deep ConvNets (11 weight layers) to the task of
street number recognition, and showed that the increased depth led to better performance.
GoogLeNet (Szegedy et al., 2014), a top-performing entry of the ILSVRC-2014 classification task,
was developed independently of our work, but is similar in that it is based on very deep ConvNets

3

Cleaning things up: Resnet

Deep Residual Learning for Image Recognition
Kaiming He Xiangyu Zhang Shaoqing Ren, Jian Sun
(CVPR 2016)

